X-SLAM: Scalable Dense SLAM for Task-aware Optimization using CSFD

ZHEXI PENG, State Key Lab of CAD&CG, Zhejiang University, China
YIN YANG, University of Utah, United States of America
TIANJIA SHAQ?, State Key Lab of CAD&CG, Zhejiang University, China
CHENFANFU JIANG, University of California, Los Angeles, United States of America
KUN ZHOU?", State Key Lab of CAD&CG, Zhejiang University, China

Fig. 1. Real-time robot active scanning and reconstruction with semantic segmentation based on our X-SLAM system. With X-SLAM, robots can carry out
automatic navigation and scanning within an unknown environment (left), and obtain a reconstruction with semantic segmentation (middle). The scanning
process is presented on the right. We propose the first real-time differentiable dense SLAM system utilizing CSFD. By integrating it with a neural network, we
facilitate robot active scanning and scene comprehension with semantic awareness.

We present X-SLAM, a real-time dense differentiable SLAM system that
leverages the complex-step finite difference (CSFD) method for efficient
calculation of numerical derivatives, bypassing the need for a large-scale
computational graph. The key to our approach is treating the SLAM process
as a differentiable function, enabling the calculation of the derivatives of
important SLAM parameters through Taylor series expansion within the
complex domain. Our system allows for the real-time calculation of not just
the gradient, but also higher-order differentiation. This facilitates the use
of high-order optimizers to achieve better accuracy and faster convergence.
Building on X-SLAM, we implemented end-to-end optimization frameworks
for two important tasks: camera relocalization in wide outdoor scenes and
active robotic scanning in complex indoor environments. Comprehensive
evaluations on public benchmarks and intricate real scenes underscore the

“Corresponding authors: Tianjia Shao (tjshao@zju.edu.cn) and Kun Zhou
(kunzhou@acm.org)

Authors’ addresses: Zhexi Peng, zhexipeng@zju.edu.cn, State Key Lab of CAD&CG,
Zhejiang University, Hangzhou, China; Yin Yang, yin.yang@utah.edu, University
of Utah, Salt Lake City, United States of America; Tianjia Shao, tjshao@zju.edu.cn,
State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China; Chenfanfu Jiang,
chenfanfu.jiang@gmail.com, University of California, Los Angeles, Los Angeles, United
States of America; Kun Zhou, kunzhou@acm.org, State Key Lab of CAD&CG, Zhejiang
University, Hangzhou, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0730-0301/2024/7-ART79

https://doi.org/10.1145/3658233

improvements in the accuracy of camera relocalization and the efficiency of
robotic navigation achieved through our task-aware optimization. The code
and data are available at https://gapszju.github.io/X-SLAM.

CCS Concepts: « Computing methodologies — Mesh geometry models;
Reconstruction.

Additional Key Words and Phrases: differentiation, SLAM, robot autonomous
reconstruction, camera relocalization

ACM Reference Format:

Zhexi Peng, Yin Yang, Tianjia Shao, Chenfanfu Jiang, and Kun Zhou. 2024.
X-SLAM: Scalable Dense SLAM for Task-aware Optimization using CSFD.
ACM Trans. Graph. 43, 4, Article 79 (July 2024), 15 pages. https://doi.org/10.
1145/3658233

1 INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a key technology
in a variety of fields including augmented reality, robot navigation,
autonomous driving, etc. While the primary objective of most SLAM
algorithms is to reconstruct 3D scenes through RGB/RGBD cam-
eras [Dai et al. 2017; Newcombe et al. 2011; Whelan et al. 2015],
they have been deeply integrated with an array of downstream
tasks, where the 3D geometry of the scene is more or less an “in-
termediate product”. For instance, Liu et al. [2018] and Gottipati
et al. [2019] combine SLAM with the robot navigation task based
on scene understanding. Wu et al. [2021] present a SLAM-based
framework for complex robotic manipulation and autonomous per-
ception tasks. McCormac et al. [2017] and Zhang et al. [2018] also
map environments containing semantics for robot intelligence and

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

HTTPS://ORCID.ORG/0000-0003-4342-5263
HTTPS://ORCID.ORG/0000-0001-7645-5931
HTTPS://ORCID.ORG/0000-0001-5485-3752
HTTPS://ORCID.ORG/0000-0003-3506-0583
HTTPS://ORCID.ORG/0000-0003-4243-6112
https://orcid.org/0000-0003-4342-5263
https://orcid.org/0000-0001-7645-5931
https://orcid.org/0000-0001-5485-3752
https://orcid.org/0000-0003-3506-0583
https://orcid.org/0000-0003-4243-6112
https://doi.org/10.1145/3658233
https://gapszju.github.io/X-SLAM
https://doi.org/10.1145/3658233
https://doi.org/10.1145/3658233

79:2 « Pengetal

user interaction. Stenborg et al. [2018] propose a cross-seasonal
localization task after the SLAM 3D reconstruction.

Typically, these methods treat the SLAM system and the down-
stream task as separate modules. That said, the SLAM system first
produces the results of 3D reconstruction and camera poses, and
the downstream application makes the subsequent decisions based
on the SLAM outputs. The quality, reliability, robustness, and per-
formance of those tasks rely on the accuracy of the SLAM result.
Once errors accumulate during the scanning process, the down-
stream task has to be processed based on the erroneous SLAM
results. More recently, researchers propose to express the SLAM sys-
tem as a differentiable function [Jatavallabhula et al. 2020], which
can be combined with downstream tasks in an end-to-end man-
ner allowing the task-based error signals to be back-propagated
all the way to the raw sensor observations. In this way, the 3D
reconstruction can be learned to optimize the task performance.
For instance, SLAM-net [Karkus et al. 2021] replaces the SLAM
modules with neural networks to enable differentiability. Its gen-
eralization ability is naturally limited to seen scenes. As a seminal
work, VSLAM [Jatavallabhula et al. 2020] first presents a fully dif-
ferentiable 3D dense SLAM system that thoroughly addresses the
non-differentiable steps in traditional SLAM frameworks by offering
mathematically differentiable approximations while preserving ac-
curacy. This paradigm relies on the computation graph [Paszke et al.
2019]. The computational graph of all tracking/mapping functions
needs to be maintained at every frame, leading to a continuous
increase in memory consumption. Based on the public code, the
SLAM procedure will crash after 60 iterations on PointFusion with
image resolution of 640x480. The efficiency is not sufficient for
the practical application due to the backward propagation cost in
large computation graphs. These limitations restrict the capability
of differentiable SLAM on real applications, where long-duration
and real-time scanning is common.

In this paper, we present X-SLAM, a real-time and differentiable
dense SLAM system that allows task-oriented optimization of SLAM
parameters based on the loss backpropagation. Inspired by [Jataval-
labhula et al. 2020], we address several fundamental challenges to
make differentiable SLAM practical. First, we need to find a memory-
efficient way to compute the differentials, so as to avoid the memory
problem caused by the increasing computation graph. Second, the
differential computation should be in real time to match the frame
rate of SLAM. Third, in many real-world tasks, the first-order op-
timization may get stuck in the local minimum, prohibiting high
accuracy of the end-to-end optimization. Our method should sup-
port the computation of high-order differentials.

We employ the complex-step finite difference (CSFD) method [Shen
et al. 2021] to make a fully differentiable SLAM system for task-
aware optimization, avoiding the expensive cost of computation
graphs. CSFD calculates the differential by Taylor series expansion
in the complex domain. We treat the SLAM procedure as a function
f and represent the SLAM input x as a complex number x* with a
small non-zero imaginary perturbation, and the differential can be
directly obtained by taking the imaginary part of f(x*) without the
need of maintaining the computation graph. In order to achieve real-
time computation of a differential, we utilize CSFD to automatically
track the differentials of all variables w.r.t. perturbed inputs during

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

the SLAM process, which naturally eliminates the backpropagation
step in the computation graph. CSFD can also be generalized using
high-order complex numerics to compute high-order differentials
such as Hessian matrix. This allows us to exploit more powerful
optimizers to achieve high accuracy.

We demonstrate X-SLAM in two important tasks: robot active
scanning and reconstruction of indoor scenes, and camera relocal-
ization in outdoor scenes. For both tasks, we develop task-aware
objective functions and optimization pipelines to optimize SLAM
parameters based on the loss backpropagation. We conduct careful
comparisons on diverse public benchmark datasets and evaluate the
performance of our approach in multiple challenging real scenes.
The comparisons show that the X-SLAM based framework outper-
forms the state-of-the-art methods qualitatively and quantitatively.

2 RELATED WORK

Task-aware SLAM. SLAM within a commodity RGBD camera
has been extensively studied. Many excellent RGBD SLAM algo-
rithms [Mur-Artal et al. 2015; Newcombe et al. 2011; Whelan et al.
2015] have been proposed and the latest SLAM methods [Dai et al.
2017; Xu et al. 2022] can achieve impressive reconstruction and
localization accuracy. In recent years, higher-level information such
as semantics in the SLAM process has received increasing attention.
Huang et al. [2021a] propose a novel convolution operation on su-
pervoxels which can fuse the multi-view 2D features and 3D features
during the online reconstruction. Liu et al. [2022] achieve online 3D
joint semantic and instance segmentation based on an incremental
sparse convolutional network. On the other hand, Salas-Moreno
et al. [2013] exploit an object database to improve the accuracy of
localization and reconstruction quality. Giimeli et al. [2023] present
a semantic and object-centric camera pose estimator for RGB-D
SLAM pipelines to complete robust registration. Ma et al. [2022]
present a novel concept called virtual correspondences to establish
geometric relationships between little overlap images. However,
they do not apply those segmentations toward explicit downstream
tasks. Jatavallabhula et al. [2020] propose a fully differentiable SLAM
framework, called VSLAM, based on the computational graph and
points out that the combination of differentiable SLAM and gradient-
based optimization can achieve task-aware SLAM systems. X-SLAM
is inspired by VSLAM. We avoid the fundamental limitations of
VSLAM, which is based on automatic differentiation (AD), and
propose CSFD-based differentiation to achieve more efficient and
memory-economic differentiation.

Derivatives evaluation. Forward difference (FD) is commonly used
numerical differentiation method. A drawback of FD is that the
numerical errors introduced during the subtraction process can sig-
nificantly impact the accuracy. CSFD addresses numerical stability
issues by extending the calculations to the complex domain and
adding perturbations to the imaginary part. Extending the function
to the dual domain can also achieve similar effects. In the dual do-
main, a dual number d = x + ye has the real part x and a dual part
ye. Dual numerics define €2 = 0 so f(xq + he) = f(x0) + [(x0) - he
because the higher-order terms of € are vanished. High-order dif-
ferentials can be computed by hyper-dual number [Aguirre-Mesa

et al. 2020; Cohen and Shoham 2016; Fike and Alonso 2011]. Dif-
ferent from CSFD, the derivative is extracted by setting h = 1 as:
f’(x0) = Du(f(xo + €)), so the dual number method is step-size-
independent and exact to machine precision. However, Aguirre-
Mesa et al. [2020] show that CSFD can achieve around 1078 relative
error for step size h = 1078, and it has better compatibility with
other computational libraries such as Eigen and cuBLAS. Therefore,
we use CSFD to compute differentials.

Camera relocalization. Camera relocalization in known scenes is
a 3D geometry task closely related to SLAM. Most existing meth-
ods accomplish relocalization through the process of feature de-
tection [Sattler et al. 2011], description [DeTone et al. 2018], and
matching [Sarlin et al. 2020]. For example, Sarlin et al. [2019, 2021]
accomplishes relocalization through feature matching on 2D images
from coarse to fine. Brachmann et al. [2017] predicts dense corre-
spondences between the input image and the 3D scene space, using
differentiable RANSAC to optimize the camera pose. On the other
hand, some research indicates that neural networks can directly pre-
dict camera poses. PoseNet [Kendall et al. 2015] is the first method
to directly regress the camera pose from a single image and recent
works use attention and transformer to improve accuracy [Li and
Ling 2022; Wang et al. 2020]. However, these methods rely on color
features, making it difficult to complete relocalization in areas with
missing or repetitive textures. Although some methods [Brachmann
and Rother 2021; Tang et al. 2021] use depth images to increase
geometric constraints, their accuracy is still limited. Thanks to X-
SLAM, we reconstruct from query images and reference images
respectively, calculate errors, build a differentiable objective func-
tion to optimize the pose parameters and achieve high-accuracy
camera relocalization.

Robot active scanning. Active scanning and online reconstruction
for robots in unknown environments is one of the important tasks
of SLAM [Callieri et al. 2004; Zeng et al. 2020]. Gonzalez-Baiios and
Latombe [2002] propose an exploration approach for selecting a
new goal according to the maximum map expansion. Building upon
this idea, many efforts have been made based on reconstructed maps
to develop exploration strategies. For example, RH-NBV [Bircher
et al. 2016] compute a random tree where branch quality is deter-
mined by the amount of unmapped space that can be explored and
the first eddge is executed at every planning step. Xu et al. [2017]
harness a time-varying tensor field conforming to the progressively
reconstructed scene to guide robot movement. On the other hand,
semantic information is also applied to provide high-level guidance.
Liu et al. [2018] introduce an approach that interleaves between
object analysis to identify the next best object for global exploration,
and object-aware information gain analysis to plan the next best
view for local scanning. Zheng et al. [2019] propose an online es-
timated discrete viewing score field (VSF) parameterized over the
3D space of 2D location and azimuth rotation to guide the robot.
These methods depend on the mapping quality and tracking ac-
curacy of SLAM. When errors accumulate, obvious mistakes will
happen. We develop a novel active scanning approach which can
accomplish both activate exploration and semantic segmentation,
based on our differentiable SLAM system and object recognition
with deep learning.

X-SLAM: Scalable Dense SLAM for Task-aware Optimization using CSFD « 79:3

3 COMPLEX-STEP FINITE DIFFERENCE

To make the paper more self-contained, we start with a brief review
of CSFD. We refer the reader to related literature e.g., see [Martins
et al. 2003] for a more thorough discussion and analysis.

Given a differentiable function f : R — R, we apply a small
perturbation h at x = x¢. The perturbed function can be Taylor
expanded as:

f(xo+h) = f(x0) + f(x0) - h+ O(h?), (1)
which leads to the forward difference of:

fxo+h) = f(xo) f(xo+h) = f(xo)
h h '

f'(x0) = +0(h) ~ @

The numerator of Eq. (2) evaluates the difference between two quan-
tities of similar magnitude as we often want h to be as small as
possible for a better approximation. Subtraction is numerically un-
stable [Higham 2002], and the so-called subtraction cancellation
could occur when f(xo + k) and f(xp) become nearly equal to each
other. Subtraction between them would eliminate many leading sig-
nificant digits, and the result after the rounding could largely deviate
from the actual value of f(xo+h) — f(xo). Because of this limitation,
the finite difference is poorly suited for estimating derivatives of
functions when high accuracy is needed.

CSFD offers a different approach to numerical derivatives. Instead
of perturbing the function in the real domain, CSFD makes the
perturbation an imaginary quantity, i.e., hi, and the corresponding
Taylor expansion becomes:

F*(x0 +hi) = f*(x0) + f* (xo) - hi + O(K?). 3)

Here f* suggests the function is “promoted” to the complex domain,
and its first-order derivative can be approximated by extracting the
imaginary parts of Eq. (3):

o) ~ MG RD)

f(x0) = p

Im(f* (x0 + hi))
h
Compared with Eq. (2), it is noted that CSFD has a second-order
convergence (O(h?)) as h approaches zero, and it does not suffer
from the subtraction cancellation. In other words, we can make h
as small as needed to fully suppress the approximate error: when h
is at the order of /e (¢ is the machine epsilon), CSFD becomes as
accurate as the analytic derivative for a given floating point system.

CSFD can be generalized to tackle high-order differentiation by
further lifting the perturbation to be a multicomplex quantity. A
multicomplex number is defined recursively: the base cases are
the real number R and the regular complex number C, which are
considered as the zero- and first-order multicomplex sets C° and
C!. The complex number set C! extends the real set by adding an
imaginary unit i as: C! = {x + yi|x,y € C°}, and the multicomplex
number up to an order of n is defined as:

Cc" = {Zl + z2in|z1,22 € Cn_l} . (5)

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

79:4 « Pengetal

Following the derivation in [Lantoine et al. 2012], the Taylor series
expansion of f* under a multicomplex perturbation is:

F* (o +hiy + -+ hin) = f*(x0) + F*D (x0) B Y i

j=1
(6)
f*(n) "

2 n
+...+_.hn le 4+
n!

j=1 j=1

f*<2)(x0) 2 < .
L0 S,

Here, f*(") is the n-th-order derivative of f*. (3 ij)k can be ex-
panded following the multinomial theorem, which contains products
of mixed k imaginary directions for the k-th-order term. Because
" ij)k # (2 ij)l for k # I, Eq. (6) allows us to approximate an
arbitrary-order derivative by extracting the corresponding imagi-
nary combination, just as we did in Eq. (4). For instance, elements
of the Hessian matrix (of a function f(x,y) : R? — R) can be easily
obtained as:

Pf(xy) In® (f(x+ hiy + hiz, y))

9x2 2 >
Pf(xy) In® (f(x,y + his +hi))

ay? ~ h2 ’ (7)
P f(xy) P f(xy) N Im@ (f(x + hiy, y + hiz))

oxdy oyox h2 :

CSFD lays out the foundation of our X-SLAM framework serving
as the primary differentiation modality of the pipeline. Since the
complex numerics are only for gradient/differentiation calculation,
the imaginary part of the computation is always small (i.e., corre-
sponding to a small variation induced by the input perturbation
hi). In this situation, it is unnecessary to perform general-purpose
complex numerics and operations. For instance, the multiplication
and division between two complex numbers z; = a; + b1i and
zp = ay + byi can be simplified as:

z1z2 = (araz — b1bz) + (a1by + azb1)i = araz + (arby + azby)i, (8)

and

z1 _aiaz+biby biaz —arbz al+b1az—albz.
L2 I W G e Lo

2 9)

2

Z2 a% + bg a% + bg az a

We use such a simplification strategy for most elementary func-
tions such as exponential functions, logarithmic functions, power
functions, trigonometric functions, etc., which are used in the SLAM
pipeline by discarding high-order products between two imaginary
quantities. We encapsulate these implementations as a complex li-
brary using C++ on CPU and CUDA on GPU by overloading most
floating-point operators to enable accelerated complex number com-
putations.

To better understand computational overhead induced by complex
promotion, we conduct a simple experiment to compare CSFD with
AD and FD. We randomly sample x within the range of [0, 1] and
calculate the first-order numerical derivative of f(x) = (e* + x> +
x)/(x+1) at x. The process is repeated one million times on the CPU.
AD is implemented in Python with PyTorch, FD is implemented
in C++ with STD library and CSFD is implemented in C++ with
our complex library. We report the total time, memory usage, and

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

Table 1. Comparison between inverse AD, FD and CSFD. The timing
information of the forward computation is also given in the parentheses.
The results show that CSFD achieves better accuracy compared with FD,
and outperforms inverse AD in computational efficiency

Method Time Memory | Relative error
AD 120.2s (39.8s) 1.53MB -
FD 163.8ms (81.9ms) 14KB 6.49¢e-02
CSFD 227.2ms (227.2ms) 32KB 8.93e-08

relative error in Table 1. The relative error is defined as:
09— 0

—l (10)

erelative = |

where v is the analytic value, and v is the numerical derivation. We
regard the result of AD as the analytic value. The results indicate
that both FD and CSFD outperform AD method in terms of time
and memory performance because they do not require maintaining
the computational graph. Although FD has a faster forward speed,
the time difference or the performance difference between CSFD
and FD is not significant because FD needs to compute the original
function twice, and the accuracy of CSFD far exceeds that of FD.

It should also be noted that the time performance also depends
on the input and output dimensions of the function. The derivative
of a parameter needs one forward pass of the function, and the total
computational cost linearly depends on the number of parameters.
To this end, we slightly change the previous example by making the
input of f a 10-dimension vector such that f(y) = (e¥Y+y3+y)/(y+1),
for y = ||x||, and x € R1°. The total calculation time for AD, FD,
CSFD increases to 137.72s, 1.05s, and 2.64s respectively. In this
case, inverse AD can obtain derivatives for all parameters with one
backpropagation process, making it a better choice for applications
that differentiate with respect to a large number of parameters, such
as deep learning.

4 X-SLAM

In this section, we walk through our X-SLAM pipeline with details.
Similar to existing dense SLAM systems, Our X-SLAM consists of
surface measurement, prediction, and camera pose estimation. With
the help of CSFD, we aim to calculate derivatives at each step with
improved scalability and efficiency.

As long as the imaginary perturbation is applied to the param-
eter of interest, we can easily obtain the corresponding derivative
by extracting the imaginary part of the result (i.e., Eq. (4)). There
are a few non-smooth computations that could potentially lead to
ill-defined gradients, and some special treatments will be needed.
Unless the gradient is needed, we could discard and ignore the
real-part computation as in [Luo et al. 2019].

4.1 X-KinectFusion

Kinect Fusion (KF) [Newcombe et al. 2011] is one of the most used
dense SLAM algorithms. When an RGBD frame {I, Dy} is received
from the sensor at time k, KF estimates the current camera pose
Tk and updates to the global fusion M.

Surface measurement. Given the camera calibration matrix K, the
depth map Dy, is obtained by applying a bilateral filter [Tomasi and
Manduchi 1998] to the raw depth map for noise reduction. Each
image pixel u = [uy, uy]" corresponds to a vertex in the current
camera frame:

Vi (u) = Dy (u)K ™ La. (11)
Here Vi is the vertex map in the camera’s local coordinate. # is the
homogeneous vector i := (u' |1)T. The normal vector of the vertex
can be computed as:

Ve () = Vi @)] x [Vi (%) = Vi (w)]
1[Vie () = Vie(@)] x [Vie(u¥*) = Ve)]

Here u** = [ux+1,uy] " and u¥* = [uy, uy+1]". This computation
is trivially parallelizable on the GPU as we launch one CUDA thread
to process each pixel.

In general, the procedure of surface measure is a map of:

(12)

Ny (u) =

(Vk, Ni.) « surface_measure(u, K, Dg). (13)

We typically regard K accurate and constant and want to understand
how the depth errors are propagated to Vi (u) and Ny (u), as well as
in the follow-up computations. This information allows us to control
the depth noise according to vertex and normal maps. Therefore, we
apply the CSFD promotion to Dy (u) as DZ(u), making both Vi (u)
and Dy (u) complex, i.e., V]:‘ (u) and NZ (u) in Egs. (11) and (12):

DZ(u) = Dy (u) + hi, (14)

where we set h = 1e — 8 to match the CSFD approximation error to
€. The partial derivative of Vi and N w.r.t. depth variation can be
obtained as:

Wi(w) Im(VZ(w) oNp(u) Im(NZ(w)

= , an =

0Dy (u) h oDy (u) h
KF computes depth maps of different resolutions for multi-level ICP
alignment. A coarser level depth is computed by applying Gaussian

(15)

smoothing over Dy (u). The perturbed hi is also Gaussian smoothed.

Ray casting. Ray casting is needed for surface prediction. Given
the camera pose Ty x, a ray is cast through the center of each pixel
u in the image:

Re

e]GSE(S). (16)

r(a, u) = aRp K™l + 1y, where Tok = [
We trace along all the rays by increasing the parameter a each
time by Aa: am+1 < am + Aa. This corresponds to a point in the
global frame v, = r(am, u) whose TSDF value F(vy,) is obtained
via trilinear interpolation. A zero crossing is then confirmed once
we have F(vm+1) < 0 and F(v;,) > 0 as:

AaF
ao =am — #, (17)
F(om+1) — F(om)
which corresponds to a vertex V() on the surface. Then the
normal vector at this surface point can be computed as: Ny (u) =
VE(r(a®,u)/IVF(r(a®)|l
This procedure suggests that the prediction of a surface point
depends on the camera pose Ty x:

(Vgk» Ng k) < surface_prediction(u, Ty x). (18)

X-SLAM: Scalable Dense SLAM for Task-aware Optimization using CSFD « 79:5

To evaluate its differentiation w.r.t. the camera pose, we apply the
complex promotion at the exponential map of the camera rotation:

* % D %
£ oy = S |\ | expldp) Rip
Tg’k—exp(éfk)—exp([p;])_[0 Kk klk . (19)
We then use CSFD to compute the derivative w.r.t. §Z after promoting
it to C9. g{)l’z € C3 is the promoted rotation vector such that:
R;. = exp (¢;) = cos 0"1d + (1 - cos 0")a*a*H +sin 0 [a*]. (20)

Id is the 3 by 3 identity matrix. 0" is the complex-perturbed rotation
angle which can be obtained as:

RY) —
0" = arccos (%) . (21)

a* = ¢* /0" is the rotation axis, and a*" is its conjugate transpose.
[a*] denotes the skew-symmetric matrix of a*. R* is the rotation
Jacobi defined as:

sin 6* sinf*\ , .4 (l—cos6"\
0" 0*)a @ +(o) [a]. (22)

The gradient of the predicted surface geometry can be obtained as:

R* =

ld+(1—

an,k B an,k ' aTg,k B Im (Vg,k)

5

i OTgr 0&; h
I (N*)
aNg’k = aNg’k . aTg,k = " g’k (23)
ki ITgr Ik h

Here & ; is the i-th perturbed component of &. CSFD tracks the
initial perturbation hi along the computation. As a result, the chain
rule in Eq. (23) is never explicitly evaluated (as opposed to AD),
and we can conveniently calculate the gradient in an end-to-end
manner.

The derivative w.r.t. pixel coordinate u is less intuitive as u € Z2 is
discrete. To this end, we generalize the domain of integer-value pixel
index to R? by bilinear interpolation. If the vertex depth significantly
differs from its neighbors:

D D) = D)l = 6, (24)
u eN(u)
we do not perturb this coordinate to avoid noisy and misinformed
derivatives.

Differentiable ICP. As soon as the vertex and normal maps are
ready, we estimate the camera pose by applying multi-level ICP be-
tween {Vi, N} and {V x_1, Ny x—1}. The ICP objective function is
the summation of all the point-to-plane distances for all the credible
surface measures:

E(G) =) | (TaaView) = Vs (@) - Ny (@)

| . (@)

Here i = (KTg_}c_l(ng’k)ij(u)). The function 7(-) performs per-
spective projection. (:Fg,k) ;j is the camera pose at the j-th iteration

during ICP and (?g, k) j=0 is initialized with the previous frame pose.
In original KF, the optimization of ICP requires linearization of the
transformation matrix. Let , f, y be the three Euler angles, and
assume that the pose change between adjacent frames is small. The

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

79:6 « Pengetal

transformation matrix is approximated by setting cos(6) ~ 1 and
sin(0) ~ 0 as:

1 a -y iy

_ IRk I 1 B ty
T-‘i”‘_[o 1]~ y - 1t

0 0 0 1

(26)

This poses Eq. (25) as a linear least squares problem in the form of
Ax = b, which can be solved by various methods such as the Normal
Equation and Singular Value Decomposition.

The ICP process in the dense SLAM system is slightly different
from generic ICP. In KF, the ICP process is executed on vertex maps
and normal maps, and the corresponding vertex Vy 1 (%) is com-
puted by perspective projection instead of searching for the nearest
point. Therefore, ICP becomes differentiable as long as we extend
the discrete pixel coordinate to R?, as in the case of ray casting.
In general, differentiating an iterative optimization procedure is
difficult. The computational graph is often unknown at the time
of compiling as we do not know how many iterations will suffice.
Most optimization techniques are sequential, and the results from
previous iterations are needed in order to proceed. Therefore, it is a
common practice in existing differentiable frameworks to assume a
fixed iteration count for iterative procedures [Hu et al. 2019]. CSFD
does not depend on the computational graph, and the derivative
evaluation is agnostic on the global computation. Therefore, we can
use any optimization algorithms to solve Eq. (25) without worrying
about the iteration count. To this end, we implemented a second-
order ICP procedure using Newton’s method at each ICP step. The
Hessian can be conveniently computed via Eq. (7), and we do not
need to approximate trigonometric functions as in Eq. (26).

Surface Update. KF updates the global fusion M according to
the camera pose Ty and the depth map Dy. M represents a 3D

TSDF volume. Let p € R be a voxel in M to be reconstructed. Its

truncated signed distance Fi (p) and weight Wy (p) are updated via:

Fe(p) = Wi-1(p)Fk-1(p) + Wp, (p) Fp, (p)
¢ Wie—1(p) + W, (p)

Wi (p) = We—1(p) + Wp, (p). (27)

Here, Fp, (p) and Wp, (p) are:

>

Fo(p) =¥ (IK51 ltge = pll - L)), (28)
Wy (p) = 1, (29)

and we have x and ¥ defined as:

min (1, z) sgn(n) ifn>—p
u

x=n(KT_1p). ¥(n) = (30)

null else.

We use the bilinear interpolation function L(x) in Eq. (28) to estimate
the depth value instead of using the nearest-neighbor lookup in
original KF to restore the smoothness of the function.

As in Eq. (19), we use & to encode the pose matrix Ty and
promote it to the complex form g;;, which transforms (Fg, Wy)
into the complex quantities (Fy, W,"). The gradient of the function
(Fg, Wg) « surface_update(My_1, Ty, Di) can be computed

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

[
® 7,
One-to-one Q) One-to-many f‘ge
association v association v

Fig. 2. An illustration of the one-to-one association (left) and our
one-to-multiple association (right). The associated global model points
(gray dots) of camera ray (green dashed line) is colored in orange.

as:

9F Im(F;
el (k), and
235 h

oW, Im(W;
aw _ In(y) (31)
i h

4.2 X-ElasticFusion and X-PointFusion

ElasticFusion (EF) and PointFusion (PF) are two classic dense SLAM
algorithms. Unlike KF, they use surfels as the representation of the
global map. The front-end odometry of EF is similar to that of PF.
However, EF includes a back-end optimization part, introducing
random ferns for loop detection and map optimization through
the deformation graph. This section focuses on the CSFD-based
differentiation of the front-end odometry to jointly discuss those
two methods. Other steps such as the camera pose estimation are
dealt with in a similar way as in KF.

In EF/PF, M is an unstructured set of global model points. At
time stamp k, each point pgy is associated with the position vy,
normal ng g, radius ry ., confidence counter ¢ ; and time stamp £ 4.
Given a new measurement {Ij, Dy }, vertex map V. and normal map
Ny are computed similar as in KF, i.e., Eqs (11) and (12). After that,
the pixel is either, as a new point, inserted into M or merged with
existing global model points. This includes two steps.

Data association. Given the estimated camera pose Ty and its
intrinsic matrix K, all global model points are rendered into an
index map at the resolution 4 by 4 times higher than Dy, where
the respective index i is stored. Each pixel in Dy thus corresponds
up to 16 model points in this index map. We remove unqualified
model point candidates for pixel u if: 1) its depth distance along
the viewing ray passing through V,; ; (u) is beyond +8gepsp; 2) its
normal deviates from Ng’k(u) by more than 8p,0rm; 3) the distance
to the latest measure Vi (u) is farther than dg;ssance- Because the
number of points in V() is smaller than the total number of
global model points, one-to-one point association as adopted in
the original EF pipeline will generate a lot of vanished gradients at
global model points. To reduce the sparsity of the gradient/Hessian,
we use a one-to-many association strategy, which updates all the
points with weight w,; based on the Gaussian kernel function
according to the distance from V; ; (u), i.e., see Fig. 2.

Surface update. If pixel u does not associate with existing model
points, a new point is added to the global model. Otherwise, for all
global model points corresponding to pixel u, the updated model

point py x is computed as:
CgkVgk + Wk Ck (w) Vo.k (u)
Cok t Wg,kck(“)
CgkNgk + Wk Cr (W) Ny i (u)
Cgk T Wg,kck(u)
Cok < Cgk t wg,ka(u), tok < k. (32)

Ug,k —

ng)k

The confidence Ci (u) is computed as in the vanilla PF:

Cr(u) = e_%. (33)

Here y is the normalized radial distance of Vi (1) from the camera
center. Clearly, pg i is a function of the depth map and camera pose.
We promote & to the complex form f;: and p . is transformed into
the complex form p* , and the gradient can be computed with CSFD
9.k
as:
3Pg,k Im(Pg’k)

P G4

5 EVALUATION

We implemented X-KF on a desktop computer with an intel i9
13900KF CPU and an nvidia RTX 4090 GPU. We implemented a
(high-order) complex numerics library dedicated to CSFD differenti-
ation, i.e., as discussed in § 3. Some linear algebra computations are
based on the Eigen library on the CPU using the C++ version of
our library as a template class, and most large-scale computations
are implemented with CUDA on the GPU.

We also built an active scanning system on a customized robot
platform with a 6-DOF articulated arm holding an intel RealSense
D435i RGBD sensor. The robot has a built-in computer running a
ROS system, which provides a package to enable robot manipulation,
such as navigation and arm actions. A laptop computer with an
intel i7 10750H CPU and nvidia 2070 GPU to run X-EF and
deep networks controls the robot through a wireless network.

5.1 X-KF Evaluation

Datasets. We conducted experiments on two datasets: ICL-NUIM
dataset [Handa et al. 2014] and TUM RGB-D dataset [Sturm et al.
2012]. ICL-NUIM dataset is a synthetic dataset with rendered RGBD
images and ground truth camera poses. We selected two sequences
including synthetic noise (Ir kt1_n, Ir kt2_n) commonly used in the
previous work to evaluate the performance of our pipeline. TUM
RGB-D dataset is a dataset captured by a Microsoft Kinect v1 with
motion-captured camera poses as ground truth, which is widely used
to evaluate the tracking accuracy of SLAM systems. We selected
two sequences (fr1/desk, fr1/xyz) for evaluation.

Comparison with AD method. First, we demonstrate the advan-
tages of CSFD compared to AD. We conduct tests on X-KF and VKF
as in VSLAM [Jatavallabhula et al. 2020], which uses the backpropa-
gation shipped with PyTorch as the major modality for computing

differentiation. These two SLAM systems share the same param-
OF}
k0
the time performance and tracking accuracy in Table 2. Due to the
huge GPU memory consumption of VKF, we can only run the first

100 frames of each sequence. On the other hand, CSFD is like a

eters and the gradient is computed at each frame. We show

X-SLAM: Scalable Dense SLAM for Task-aware Optimization using CSFD « 79:7

Table 2. Time performance and tracking accuracy of X-KF and VKF.
The tracking accuracy is measured with absolute trajectory error (ATE
RMSE). Because the computational graph of AD method continuously grows
in SLAM process, this experiment is performed on the first 100 frames for
each sequence. The timing information (in millisecond) of the forward
computation is also given in the parentheses. Even so, X-KF achieves around
10x speed of VKF and achieve similar tracking accuracy.

X-KF VKF X-KF VKF
Time (ms) | Time (ms) | ATE (m) | ATE (m)
1283 | 8.4(8.4) 118.9 (54.1) 0.026 0.025
frl_desk | 256° | 9.5(9.5) 154.6 (72.9) 0.022 0.024
5123 | 11.2 (11.2) | 475.2 (137.9) 0.024 0.024
128% | 7.9(7.9) 113.3 (63.5) 0.018 0.020
10.1 (10.1) | 155.6(81.2) | 0.018 0.019
512% | 11.5 (11.5) | 500.4 (160.3) 0.019 0.019

Sequence | Res.

frl_xyz | 256°

Table 3. Comparison of tracking accuracy. Our tracking accuracy (ATE
RMSE) is lower because we have not yet incorporated global optimization,
leading to the drift along longer trajectories. The measurement is in meters.

Sequence | X-KF BundleFusion ElasticFusion
! [Dai et al. 2017] | [Whelan et al. 2015]
fr1_desk | 0.053 0.020 0.016
frl_xyz 0.020 0.010 0.011

forward AD which does not need backpropagation. CSFD shows
clear advantages in terms of both efficiency and accuracy.

Comparison with traditional SLAM. To provide a more comprehen-
sive and quantitative comparison, we compare the tracking accuracy
between X-KF (at resolution of 512%) and two traditional SLAM sys-
tems, BundleFusion [Dai et al. 2017] and ElasticFusion [Whelan
et al. 2015] in Table 3. X-SLAM does not achieve the state-of-the-
art performance because those methods incorporate a back-end
global optimization module, which is currently not integrated into
X-SLAM. We also compare the time and memory performance of
X-KF with original KF in Table 4. The speed of X-KF is slightly
slower than original KF due to the additional computational costs
for complex numbers. The spatial complexity of CSFD reformulation
is O(N). In the worst case, the memory consumption is doubled due
to the added imaginary part. For example, the main GPU memory
consumption in KF is the TSDF volume which stores color (4 bytes),
weight (4 bytes), and TSDF value (4 bytes) in each voxel. To use
CSFD, we additionally use a float number (4 bytes) as the imaginary
part of TSDF value, which results in approximately 33% memory
overhead. However, we believe that this result is comparable and
X-KF provides additional differential information.

Simplified CSFD computation. We have briefly introduced our
complex library based on simplified complex functions for CSFD in
Section 3 and now we compare the time performance with other
publicly available libraries. First, we compare the C++ version of
our complex library with the C++ standard library on the CPU.

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

79:8 « Pengetal

Table 4. Comparison of time/memory performance. Both the time and
memory performance are slightly worse than that of original KF due to the
extra complex number computing process.

Seauence | XKE | KF X-KF KF
CqUENCe 1 Eps | FPS | Memory (MB) | Memory (MB)
frl_desk | 829 | 1015 2824 1937
frl_xyz | 92.6 | 1135 2234 1582

Table 5. Computation time (unit: ms) of our complex numerics library
and C++ STD library. We test a variety of common mathematical opera-
tions, and the results show that our complex number numerics library is
faster. And as the complexity of the operations increases, our improvement
becomes more apparent.

Methods ‘ Z1 - 29 ‘ z1/z2 ‘ exp(z1 +z2) ‘ sin(zy +z2) ‘ (21 + 22)3

STD 26.92 39.94 58.61 81.58 155.08
Ours 24.32 30.45 47.48 67.06 102.44
We set z; = 0.5 + hi, zg = —1.5 + hi and evaluate some common

functions. Each function is executed one million times, and the
total time is presented in Table 5. Also, we compare the CUDA
version of our complex library with the nvidia’s library, libcu++ on
GPU across the fr1/xyz sequence of TUM RGB-D dataset for a 5123
voxel reconstruction. X-KF implemented by our complex library can
achieve 92.6 FPS, while X-KF implemented by libcu++ only achieves
59.4 FPS, resulting in 1.55 times slower.

High order ICP. Finally, we test the performance of ICP based on
different optimization algorithms for pose estimation. We project
a depth image from Ir kt1_n of ICL-NUIM dataset to obtain the
source point cloud, and the target point cloud is generated using
a random transformation. We run point-to-plane ICP using three
methods: Gradient Descent, Nonlinear-CG, and Newton’s method.
The optimization process is shown in Figure 3 and the results show
that higher-order optimization methods have a significantly faster
convergence speed.

Translation Error Rotation Error ICP Loss
0.10 = Newton Newton Newton
. Nonlinear CG Nonlinear CG| 10-2 Nonlinear CG
GD = GD = GD
101}
| | L \
0

10 20 30 40 50 10 20 30 40 5 10 20 30 40 5

Iteration# Iteration# Iteration#

Fig. 3. The optimization process of ICP based on different optimiza-
tion methods. Translation error (unit: m), rotation error (unit: °) and point-
to-plane ICP loss are reported.

Also, we compare the tracking robustness of our X-KF and original
KF on Ir kt2_n of the ICL-NUIM dataset with different frame step. It
can be found that although the tracking robustness is similar when
frame step is 1, as the frame step increases, the performance of X-KF

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

0.04 0.04 0.04
i = X-KF
£ KF
= 0.03 0.03 0.03
b |
@ f
= 0.02 s 0.02 | 0.02
2 | SR | P
Q / L ol N ‘,‘- | ni
« 0.01 | e v 0.01 i 0.01 “
= o Sy bl
= Al "l
0.00 100 200 3 00'0G 100 200 3 ()0'0U 100 200 300
Frame ID Frame ID Frame ID

Fig. 4. Absolute distance error (unit: m) during tracking. Left: frame
step = 1, Mid: frame step = 2, Right: frame step = 3. High-order ICP can
achieve better tracking accuracy when the camera moves faster.

surpasses that of original KF. This is attributed to the following
reasons. First, the convergence speed of Newton’s method is higher
than that of first-order optimization methods. Additionally, as the
frame step increases, the pose differences between adjacent frames
become larger, and the linear approximation of ICP in original KF
works only when the pose differences between adjacent frames are
small.

5.2 Camera Relocalization Based on X-KF

A precise relocalization of the camera is a key component in vi-
sion tasks. Given multiple reference images with the corresponding
camera poses {I, Tg,r}, camera relocalization refers to estimating
the camera pose Ty 4 of any query image I. CSFD is very suitable
for camera pose optimization because it only requires perturba-
tions on a small number (i.e., 6) of parameters. We show that an
accurate camera relocalization can be conveniently obtained us-
ing depth maps based on X-KF. Let M, be the reference TSDF
volume. We compute a TSDF volume My such that (Fg, Wy) «
surface_update(My, Tyq, Dg) for a query RGBD image (Ig, Dg)
and an estimated camera pose Ty, 4. Then an objective function can
be defined as:

E(Tgq) =) (Fr(p) = Fy(p))*. (35)
P

The initial estimation for optimization can be obtained using any
existing method. With X-KF, we can easily obtain the Hessian matrix
and the Jacobian matrix of the objective function E(T4), and use
an optimizer, i.e. Newton’s method, to minimize E(Tg,q). Since the
TSDF values of the same voxel may vary at different viewpoints,
we only use the images around the initial estimation to reconstruct

M.

Comparison. We compare our method with multiple state-of-the-
art visual relocalization approaches. HLoc [Sarlin et al. 2019] and
PixLoc [Sarlin et al. 2021] are feature-based methods for estimating
the poses of the query images, which only require RGB images
as input. VS-Net [Huang et al. 2021b] proposes scene-specific 3D
landmarks and generates landmark segmentation maps to help with
camera relocalization. DSM [Tang et al. 2021] is a scene-agnostic
camera relocalization method that regresses the scene coordinates of
the query images and the camera poses are solved by PnP algorithms.
However, DSM requires the scene coordinates corresponding to the
reference images. DSAC* [Brachmann and Rother 2021] is a combi-
nation of scene coordinate regression and differentiable RANSAC

for end-to-end training and designs multiple workflows for different
input data structures. SC-wLS [Xin et al. 2019] proposes a network
to directly regress the camera pose based on the pipeline of DSAC™.

Experiments on 7-Scenes dataset. We start our evaluation on 7-
Scenes dataset [Shotton et al. 2013] including small indoor scenes,
which is commonly used to compare camera relocalization ap-
proaches. We use the aforementioned visual relocalization approaches
to estimate the camera pose of the query image as the initial solu-
tion. For the following optimization, we implement both Gradient
Descent and Newton’s method. As Newton’s method is sensitive to
the initial solution, we set a threshold # when applying Newton’s
method for optimization. If the loss exceeds 7, we use the gradient
direction —g; instead, we use the Newton'’s direction —H -1 g. We re-
port the statistical results in Table 7 and the initial/optimized HLoc
trajectories in 7-Scenes dataset. The results indicate that our method
is applicable not only to HLoc, PixLoc and SC-wLS, which only
use RGB images for relocalization, but also improves the accuracy
of the results for DSM and DSAC” that already utilize depth infor-
mation. This improvement is particularly significant in Pumpkin,
redkitchen, and stairs where traditional methods do not perform
well. In addition, we must point out the important role of higher-
order differentials in the optimization process. It is evident that the
Newton’s method outperforms Gradient Descent in terms of conver-
gence accuracy. On the other hand, we list the results of Gradient
Descent based on the gradients computed by FD, and the results
are worse than those of CSFD due to the low accuracy. We also
report the optimization curves in Figure 6 and the results indicate
that Newton’s method outperforms Gradient Descent in terms of
convergence speed as well.

Experiments on our dataset. We also build a large-scale RGBD
dataset to validate our method in larger scale environments. Our
dataset consists of two outdoor buildings and two office rooms. For
each scene, we conduct two scans using a Microsoft Kinect v2. One
scan reconstructed by BundleFusion is the reference set and the
other is the query set. Because the depth images are not registered to
the color images, we only evaluate HLoc, PixLoc and DSAC* (RGB
mode) and each method is re-trained on the reference set. It should
be noted that due to the issues such as drift during the scanning of
large-scale scenes, we do not have the ground truth camera poses
for the query set. Given the reference pointcloud Py, and the query
pointcloud Py corresponding to the depth map Dy, i.e., Eq (11), we
compute eq to measure the accuracy of the camera pose Ty 4:

1 .
¢(Tg) =57 2, ,min 1Tagpg=porll ()
q pququ gr

We consider the frames with eg > 0.1m as outliers and exclude
them from statistical analysis. We report the result in Table 6. Simi-
lar to the results in 7-Scenes dataset, our optimization method can
still improve the accuracy of camera relocalization even in complex
and large-scale environments. We also show the relocalization tra-
jectories initialized from PixLoc and the reference model in Figure
7.

X-SLAM: Scalable Dense SLAM for Task-aware Optimization using CSFD « 79:9

Table 6. Camera relocalization results (unit: cm) in our large-scale
datasets. We use the nearest neighbor distance between the projected query
depth map and the reference model. The initial/GD optimized/Newton
optimized results are reported.

Scene HLoc PixLoc DSAC*
Outside A | 2.34/1.46/1.33 | 2.75/1.75/1.58 | 3.36/1.95/1.78
Outside B | 1.90/1.53/1.47 | 2.20/1.75/1.67 | 3.38/2.33/2.17

Office A 3.03/1.84/1.72 | 3.19/2.12/1.99 | 3.30/2.43/2.20
Office B | 3.02/2.32/2.21 | 3.69/3.15/3.02 | Not converge

5.3 Robot Active Scanning Based on X-EF

Active scanning and online reconstruction by robots is another
important downstream task of SLAM. We demonstrate that, by
leveraging X-EF, we can combine this task with neural networks
to achieve better performance. We follow the pipeline in [Liu et al.
2018]:

(1) Object Segmentation. Robots perform real-time scene recon-
struction using X-EF and then segment the point cloud to
obtain a series of objects.

(2) Target Object Decision. Robots evaluate these objects based
on a set of criteria such as distance, size, orientation, etc.,
and choose the optimal scanning target, called the Next Best
Object (NBO)

(3) Target View Decision. Once the NBO is determined, the object
point cloud Pp from X-EF is sent to a pre-trained PointNet [Qi
et al. 2017] network to predict a label score S, and the Next
Best View (NBV) is defined as the viewport that maximizes
the recognition score.

(4) Repeating Scans. Once the NBV is determined, the robot is
instructed to move to the new viewpoint. PointNet is then
re-evaluated, assigning scores to the objects based on the
new perspective. This process continues until the recognition
score exceeds the threshold, and the system returns to select
another NBO.

In our system, the NBV selection process aims to maximize the
recognition score S. An objective function can be defined as:

E(Tyx) = =S = —point_net(Po). (37)

Using X-EF, we can calculate the differentiation of S w.r.t. the camera
pose:

as S dpo

— — . 38
o Iy, =

Rki plch

t 95

apo
while the SLAM gradient % is calculated by X-EF. Similar to
camera relocalization in Section 5.2, CSFD can quickly calculate
the SLAM gradient for the 6DOF camera pose. Since computing
higher-order differentials is challenging with AD method, and the
dimension of & is only 6, we employ finite differences based on
gradients to compute the Hessian matrix.

Here the network gradien is computed using AD method,

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

79:10 + Pengetal.

Table 7. Camera relocalization results in 7-Scenes dataset. We report the median translation (unit: cm), rotation (unit: °) errors and the average recall at
(5¢m,5°). Whether these methods consider depth information or not, our method can further enhance accuracy, especially Newton’s method based on

higher-order derivatives.

Method Optimization Chess Fire Heads Office Pumpkin Redkitchen Stairs
Init 2.41/0.85/92.3 | 2.28/0.91/89.3 | 1.08/0.74/96.3 | 3.12/0.90/76.7 | 4.83/1.27/51.8 | 4.21/1.39/58.9 | 5.23/1.47/47.3
HLoc GD (FD) 2.32/0.82/93.3 | 2.22/0.89/90.9 | 1.02/0.75/97.0 | 3.09/0.91/77.8 | 4.52/1.26/54.4 | 4.02/1.31/61.2 | 5.25/1.43/45.4
[Sarlin et al. 2019] GD 1.68/0.56/98.8 | 1.94/0.78/93.3 | 0.90/0.61/98.6 | 2.55/0.80/86.1 | 3.89/1.03/61.0 | 3.26/1.23/74.8 | 4.96/1.27/50.7
Newton 1.15/0.37/99.3 | 1.19/0.48/99.0 | 0.79/0.47/99.0 | 1.46/0.47/99.0 | 2.10/0.69/74.8 | 2.37/0.86/83.3 | 2.62/0.70/81.2
Init 2.37/0.81/91.0 | 1.90/0.78/86.5 | 1.26/0.86/87.4 | 2.57/0.79/81.7 | 4.11/1.19/59.0 | 3.41/1.23/67.5 | 4.49/1.22/53.4
PixLoc GD (FD) 2.31/0.79/91.4 | 1.86/0.76/86.7 | 1.13/0.83/87.5 | 2.53/0.79/82.8 | 3.37/1.19/68.1 | 3.33/1.22/68.7 | 4.69/1.19/53.2
[Sarlin et al. 2021] GD 1.65/0.55/96.0 | 1.61/0.74/87.5 | 1.01/0.65/90.0 | 2.15/0.71/85.3 | 3.43/0.99/66.7 | 2.93/1.11/75.8 | 4.39/1.06/55.5
Newton 1.11/0.37/96.5 | 1.15/0.46/89.2 | 0.82/0.50/96.4 | 1.47/0.46/95.0 | 2.10/0.69/73.7 | 2.50/0.91/79.1 | 3.18/0.75/65.4
Init 1.57/0.52/98.9 | 1.91/0.82/96.2 | 1.20/0.72/98.7 | 2.14/0.60/91.5 | 3.84/1.05/64.1 | 3.59/1.08/72.7 | 2.79/0.77/93.4
VS-Net GD (FD) 1.54/0.53/99.0 | 1.86/0.78/96.5 | 0.96/0.74/99.4 | 2.07/0.62/92.5 | 3.57/1.05/65.7 | 3.44/1.03/74.6 | 2.78/0.77/92.9
[Huang et al. 2021b] GD 1.21/0.41/99.6 | 1.46/0.67/98.5 | 0.77/0.61/100 | 1.78/0.59/95.1 | 3.44/1.01/67.3 | 2.82/1.02/855 | 2.58/0.74/94.5
Newton 0.96/0.35/99.5 | 0.92/0.41/99.4 | 0.48/0.40/100 | 1.27/0.41/98.5 | 2.62/0.75/76.5 | 2.32/0.87/87.0 | 1.93/0.60/98.2
Init 1.01/0.44/98.9 | 1.12/0.53/99.1 | 0.98/0.87/100 | 1.19/0.48/99.9 | 1.97/0.67/80.9 | 2.09/0.83/92.1 | 2.62/0.78/91.2
DSAC* GD (FD) 0.99/0.43/99.0 | 1.13/0.54/98.9 | 0.98/0.81/100 | 1.26/0.48/99.1 | 2.01/0.66/80.4 | 2.15/0.77/91.5 | 2.67/0.78/91.6
[Brachmann et al. 2017] GD 0.85/0.34/99.4 | 0.95/0.45/99.3 | 0.76/0.63/100 | 1.14/0.44/99.4 | 1.67/0.51/86.4 | 1.64/0.54/93.8 | 2.58/0.78/94.2
Newton 0.93/0.34/99.5 | 0.85/0.37/99.7 | 0.50/0.42/100 | 1.24/0.41/99.7 | 1.20/0.38/89.6 | 1.04/0.36/98.4 | 1.89/0.60/93.6
Init 2.01/0.70/94.7 | 2.62/0.82/0.88 | 1.47/0.84/95.4 | 3.53/0.82/70.7 | 5.21/1.11/47.5 | 4.80/1.12/52.2 | 4.89/1.36/50.9
DSM GD (FD) 2.07/0.76/94.3 | 2.60/0.87/88.2 | 1.43/0.92/95.5 | 3.46/0.79/72.3 | 4.87/1.20/51.0 | 4.71/1.15/53.6 | 4.86/1.16/67.2
[Tang et al. 2021] GD 2.13/0.66/96.6 | 2.04/0.75/95.2 | 1.26/0.78/97.2 | 3.01/0.82/79.2 | 4.08/1.09/61.3 | 3.96/1.02/64.8 | 3.27/0.86/76.0
Newton 2.02/0.60/96.8 | 1.71/0.67/96.1 | 1.09/0.71/97.5 | 2.72/0.76/83.4 | 3.06/0.86/74.6 | 2.96/0.83/75.9 | 2.66/0.62/82.5
Init 3.03/0.76/78.9 | 4.19/1.08/55.0 | 2.86/1.92/60.7 | 5.18/0.86/0.48 | 7.29/1.27/28.7 | 8.27/1.44/26.4 | 12.1/2.43/15.7
SC-wLS GD (FD) 2.75/0.82/80.2 | 3.91/1.15/56.3 | 2.80/1.84/60.1 | 4.52/0.96/54.7 | 6.72/1.41/36.4 | 7.45/1.55/32.3 | 11.9/2.43/19.0
[Xin et al. 2019] GD 1.45/0.50/89.7 | 2.28/0.90/65.4 | 1.41/1.12/61.3 | 2.66/0.79/76.9 | 4.65/1.24/52.7 | 5.01/1.44/49.7 | 11.2/2.22/26.8
Newton 1.04/0.38/90.9 | 1.22/0.52/70.9 | 0.95/0.75/61.3 | 1.56/0.51/83.4 | 3.27/0.85/59.8 | 3.24/1.06/62.7 | 9.55/1.72/39.1

Performance of object recognition. We first evaluate the perfor-
mance of NBV-based single object recognition. To provide a quan-
titative evaluation, we compare our method with [Liu et al. 2018]
in the robotic simulation environment of Gazebo running on top of
ROS. We pre-train a PointNet network on ModelNet40 dataset [Wu
et al. 2015] and choose several object models from the test split to
evaluate. For each model, we scale it to an appropriate size and add
random perturbations to the horizontal orientation and position.
We limit the scanning trajectory length to 5m, and record the recog-
nition score corresponding to the ground truth label every 0.2m.
20 models are selected for each category, and the average scores
are reported in Figure 8. Please note that we compare the moving
distance for achieving the same level of recognition accuracy, which
is more appropriate because we find there may be a significant dis-
tance between two viewpoints. Our results are better than those of
[Liu et al. 2018] in most categories. On the other hand, although
both first-order and second-order optimization end up with similar
scores in most cases, second-order optimization is more stable and
converges faster.

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

Performance of virtual scene scanning. Figure 9 shows robot ac-
tivate scanning process in some virtual scenes from 3D-FRONT
dataset [Fu et al. 2021]. It should be noted that since [Liu et al. 2018]
did not provide the 3D model database, we build our own model
database using ModelNet40 dataset for comparison. All methods are
compared for achieving the same level of recognition completeness.
The scanning process is stopped when all objects are recognized
(with score > 0.8). We draw the scanning trajectory, and the tra-
jectory length is also reported. It can be observed that our method
achieves simpler and shorter paths. Although Gradient Descent can
get a good moving direction, it is limited by overshoot, which some-
times makes the robot move back and forth. In contrast, Newton’s
method can solve this problem, improving the scanning path.

Performance of real scene scanning. We test our system by scan-
ning five unknown scenes, including a resting room, a living room
and three outdoor terraces. Figure 10 shows the reconstruction re-
sults in these scenes. The results show that the robot can actively
complete scene reconstruction and recognize most objects.

First Order Second Order

Initial

Chess

Office Fire

Redkitchen

X-SLAM: Scalable Dense SLAM for Task-aware Optimization using CSFD « 79:11

First Order Second Order

Initial

Fig. 5. Camera relocalization trajectory in 7-Scenes dataset for HLoc. For all scenes, our optimization method based on X-KF can significantly enhance
the relocalization accuracy. The results also demonstrate the importance of higher-order optimization, which is difficult for AD method.

Translation Error TSDF Loss

Rotation Error

Rotation Error

Translation Error TSDF Loss

Newton, Frame 31
Newton, Frame 61
Newton, Frame 91
GD, Frame 31
GD, Frame 61
GD, Frame 91

10 20 30 40 5 10 20 30 40 50 10 20 30 40 5

10

20 30 40 5

Fig. 6. Optimization curves on the chess scene in 7-Scenes dataset. Three frames (No. 31, No. 61, No. 91) are optimized 50 iterations in Gradient Descent
and Newton’s method. Not only does Newton’s method achieve a faster convergence speed, but it also prevents falling into local minima.

6 CONCLUSION

We present a real-time and differentiable dense SLAM system based
on CSFD. By adding perturbations to variables of interest, the numer-
ical differentiations can be computed in efficiently during the SLAM
process. We propose X-KF and X-EF, which are the real-time differ-
entiable versions of the two classic SLAM systems, and demonstrate

that CSFD is faster and uses less memory compared to auto differ-
entiation. Based on X-SLAM, we introduce task-aware optimization
frameworks for two downstream tasks, camera relocalization and
robot active scanning. Thanks to the ability of X-SLAM to compute
high-order derivatives, our optimization framework shows superior
performance in a variety of public datasets and difficult real-world

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

79:12 + Pengetal.

Initial First Order

Outside A
Length = 128.16 m

Outside B
Length = 62.87 m

Office A
Length = 109.24 m

Office B
Length = 99.18 m

Second Order

3cm

0cm

Fig. 7. Camera relocalization trajectories in our large-scale dataset for PixLoc. The trajectories are colored by relocalization error. Please note that we
have discarded outliers with e > 0.1m, which occur more frequently in indoor scenes because of local repetition.

Dresser
= [Liuetal]
== GD

Desk Bed
= [Liuetal.]
= GD

o
<
=3

= [Liuetal.]
—— GD

@ o o
§ 08] — Newton v‘ § == Newton § 0.8]— Newton
7] »n 0.8 v %] X
0.7] 0.7
& 2 £
006 Qo6 5 0.6
5
05 1 2 3 4 5 T 3 3 3 5 %% 1 2 3 1
Camera Moving Distance Camera Moving Distance Camera Moving Distance
Sofa NightStand Chair
1.0 1.0 1.0
L o v
= = =
S 8 S
»n 0.8 »n 0.8 » 0.8
= = -
g [Liu et al.] s [Liu et al.] g [Liu et al.]
= — iu et al. = — [Liuetal] | -5 i iu et al.
Q06 — &b 06 —— G 06 —— G

= Newton = Newton = Newton

1 2 3 4 5 1 2 3 4 5 1 2 3 4
Camera Moving Distance Camera Moving Distance Camera Moving Distance

Fig. 8. Recognition score during robot activate scanning. We record
the object recognition score given by PointNet every 0.2m. On most objects,
our method can achieve better results than the database-based method.

environments. As CSFD requires perturbing variables one by one
to calculate derivatives, our method mainly focuses on pose opti-
mization over a smaller number of degrees of freedom. It remains
challenging to carry out high-order differential calculations and
high-dimension degrees of freedom in the SLAM system.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their insightful
comments. This work is supported by NSF China (No. U23A20311

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

& 62322209), the XPLORER PRIZE, the 100 Talents Program of
Zhejiang University, and NSF under grant numbers of 2301040,
2008915, 2244651, 200856.

REFERENCES

Andres M. Aguirre-Mesa, Manuel J. Garcia, and Harry Millwater. 2020. MultiZ: A
Library for Computation of High-order Derivatives Using Multicomplex or Multidual
Numbers. ACM Trans. Math. Softw. 46, 3, Article 23 (jul 2020), 30 pages. https:
//doi.org/10.1145/3378538

Andreas Bircher, Mina Kamel, Kostas Alexis, Helen Oleynikova, and Roland Siegwart.
2016. Receding Horizon "Next-Best-View" Planner for 3D Exploration. In 2016 IEEE
International Conference on Robotics and Automation (ICRA). 1462-1468. https:
//doi.org/10.1109/ICRA.2016.7487281

Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie Shotton, Frank Michel,
Stefan Gumhold, and Carsten Rother. 2017. Dsac-differentiable ransac for camera
localization. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 6684-6692.

Eric Brachmann and Carsten Rother. 2021. Visual camera re-localization from RGB
and RGB-D images using DSAC. IEEE transactions on pattern analysis and machine
intelligence 44, 9 (2021), 5847-5865.

Marco Callieri, Andrea Fasano, Gaetano Impoco, Paolo Cignoni, Roberto Scopigno, G
Parrini, and Giuseppe Biagini. 2004. RoboScan: an automatic system for accurate
and unattended 3D scanning. In Proceedings. 2nd International Symposium on 3D
Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. IEEE, 805-812.

Avraham Cohen and Moshe Shoham. 2016. Application of hyper-dual numbers to
multibody kinematics. Journal of Mechanisms and Robotics 8, 1 (2016), 011015.

Angela Dai, Matthias Niefiner, Michael Zollhofer, Shahram Izadi, and Christian Theobalt.
2017. BundleFusion: Real-Time Globally Consistent 3D Reconstruction Using On-
the-Fly Surface Reintegration. ACM Trans. Graph. 36, 4, Article 76a (jul 2017),
18 pages. https:/doi.org/10.1145/3072959.3054739

Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. 2018. Superpoint: Self-
supervised interest point detection and description. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition workshops. 224-236.

Jeffrey Fike and Juan Alonso. 2011. The development of hyper-dual numbers for exact
second-derivative calculations. In 49th AIAA aerospace sciences meeting including

https://doi.org/10.1145/3378538
https://doi.org/10.1145/3378538
https://doi.org/10.1109/ICRA.2016.7487281
https://doi.org/10.1109/ICRA.2016.7487281
https://doi.org/10.1145/3072959.3054739

X-SLAM: Scalable Dense SLAM for Task-aware Optimization using CSFD « 79:13

Trajectory Length = 36.34m Trajectory Length = 33.60m Trajectory Length = 26.97m

Trajectory Length = 65.74m Trajectory Length = 55.84m Trajectory Length = 52.03m

Trajectory Length = 40.50 m

[Liu et al.] Gradient Descent Newton's Method

Fig. 9. Robot active scanning in virtual scenes. The robot starts from the same position for active scanning, and the moving trajectory is drawn on the
map. We also report the trajectory length.

the new horizons forum and aerospace exposition. 886. of Computer Vision (2021), 1-25.
Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang Zhao, Steve Maybank, and Héctor H. Gonzélez-Bafios and Jean-Claude Latombe. 2002. Navigation Strategies for
Dacheng Tao. 2021. 3d-future: 3d furniture shape with texture. International Journal Exploring Indoor Environments. The International Journal of Robotics Research 21,

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

79:14 + Pengetal.

Fig. 10. Segmentation and reconstruction results in real scene scanning.

10-11 (2002), 829-848. https://doi.org/10.1177/0278364902021010834

Sai Krishna Gottipati, Keehong Seo, Dhaivat Bhatt, Vincent Mai, Krishna Murthy, and
Liam Paull. 2019. Deep active localization. IEEE Robotics and Automation Letters 4, 4
(2019), 4394-4401.

Can Giimeli, Angela Dai, and Matthias Niefiner. 2023. ObjectMatch: Robust Regis-
tration using Canonical Object Correspondences. In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 13082-13091. https://doi.org/10.
1109/CVPR52729.2023.01257

Ankur Handa, Thomas Whelan, John McDonald, and Andrew J. Davison. 2014. A
benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In 2014 IEEE
International Conference on Robotics and Automation (ICRA). 1524-1531. https:
//doi.org/10.1109/ICRA.2014.6907054

Nicholas J Higham. 2002. Accuracy and stability of numerical algorithms. SIAM.

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B Tenenbaum, William T
Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019. Chainqueen: A
real-time differentiable physical simulator for soft robotics. In 2019 International
conference on robotics and automation (ICRA). IEEE, 6265-6271.

Shi-Sheng Huang, Ze-Yu Ma, Tai-Jiang Mu, Hongbo Fu, and Shi-Min Hu. 2021a. Su-
pervoxel Convolution for Online 3D Semantic Segmentation. ACM Transactions on
Graphics 40, 3 (Aug. 2021), 34:1-34:15. https://doi.org/10.1145/3453485

Zhaoyang Huang, Han Zhou, Yijin Li, Bangbang Yang, Yan Xu, Xiaowei Zhou, Hujun
Bao, Guofeng Zhang, and Hongsheng Li. 2021b. Vs-net: Voting with segmentation
for visual localization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 6101-6111.

Krishna Murthy Jatavallabhula, Ganesh Iyer, and Liam Paull. 2020. VSLAM: Dense
SLAM meets Automatic Differentiation. In 2020 IEEE International Conference on
Robotics and Automation (ICRA). 2130-2137. https://doi.org/10.1109/ICRA40945.
2020.9197519

Peter Karkus, Shaojun Cai, and David Hsu. 2021. Differentiable SLAM-net: Learning
Particle SLAM for Visual Navigation. arXiv:2105.07593 [cs, stat]

Alex Kendall, Matthew Grimes, and Roberto Cipolla. 2015. Posenet: A convolutional
network for real-time 6-dof camera relocalization. , 2938-2946 pages.

Gregory Lantoine, Ryan P Russell, and Thierry Dargent. 2012. Using multicomplex
variables for automatic computation of high-order derivatives. ACM Transactions

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

on Mathematical Software (TOMS) 38, 3 (2012), 16.

Xinyi Li and Haibin Ling. 2022. GTCaR: Graph Transformer for Camera Re-Localization.
In Computer Vision — ECCV 2022, Shai Avidan, Gabriel Brostow, Moustapha Cissé,
Giovanni Maria Farinella, and Tal Hassner (Eds.). Vol. 13670. Springer Nature Switzer-
land, Cham, 229-246. https://doi.org/10.1007/978-3-031-20080-9_14

Ligang Liu, Xi Xia, Han Sun, Qi Shen, Juzhan Xu, Bin Chen, Hui Huang, and Kai Xu. 2018.
Object-aware guidance for autonomous scene reconstruction. ACM Transactions on
Graphics (TOG) 37, 4 (2018), 1-12.

Leyao Liu, Tian Zheng, Yun-Jou Lin, Kai Ni, and Lu Fang. 2022. INS-Conv: Incremental
Sparse Convolution for Online 3D Segmentation. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 18953-18962. https://doi.org/10.
1109/CVPR52688.2022.01840

Ran Luo, Weiwei Xu, Tianjia Shao, Hongyi Xu, and Yin Yang. 2019. Accelerated complex-
step finite difference for expedient deformable simulation. ACM Transactions on
Graphics (TOG) 38, 6 (2019), 1-16.

Wei-Chiu Ma, Angi Joyce Yang, Shenlong Wang, Raquel Urtasun, and Antonio Torralba.
2022. Virtual Correspondence: Humans as a Cue for Extreme-View Geometry.
In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
15903-15913. https://doi.org/10.1109/CVPR52688.2022.01546

Joaquim RRA Martins, Peter Sturdza, and Juan J Alonso. 2003. The complex-step
derivative approximation. ACM Transactions on Mathematical Software (TOMS) 29,
3 (2003), 245-262.

John McCormac, Ankur Handa, Andrew Davison, and Stefan Leutenegger. 2017. Se-
manticFusion: Dense 3D Semantic Mapping with Convolutional Neural Networks.
In 2017 IEEE International Conference on Robotics and Automation (ICRA). 4628-4635.
https://doi.org/10.1109/ICRA.2017.7989538

Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardos. 2015. ORB-SLAM: A Versatile
and Accurate Monocular SLAM System. IEEE Transactions on Robotics 31, 5 (Oct.
2015), 1147-1163. https://doi.org/10.1109/TRO.2015.2463671 arXiv:1502.00956 [cs]

Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,
Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. 2011. Kinectfusion: Real-time dense surface mapping and tracking.
In 2011 10th IEEE international symposium on mixed and augmented reality. leee,
127-136.

https://doi.org/10.1177/0278364902021010834
https://doi.org/10.1109/CVPR52729.2023.01257
https://doi.org/10.1109/CVPR52729.2023.01257
https://doi.org/10.1109/ICRA.2014.6907054
https://doi.org/10.1109/ICRA.2014.6907054
https://doi.org/10.1145/3453485
https://doi.org/10.1109/ICRA40945.2020.9197519
https://doi.org/10.1109/ICRA40945.2020.9197519
https://arxiv.org/abs/2105.07593
https://doi.org/10.1007/978-3-031-20080-9_14
https://doi.org/10.1109/CVPR52688.2022.01840
https://doi.org/10.1109/CVPR52688.2022.01840
https://doi.org/10.1109/CVPR52688.2022.01546
https://doi.org/10.1109/ICRA.2017.7989538
https://doi.org/10.1109/TRO.2015.2463671
https://arxiv.org/abs/1502.00956

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates,
Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 652-660.

Renato F. Salas-Moreno, Richard A. Newcombe, Hauke Strasdat, Paul H.J. Kelly, and
Andrew J. Davison. 2013. SLAM++: Simultaneous Localisation and Mapping at the
Level of Objects. In 2013 IEEE Conference on Computer Vision and Pattern Recognition.
1352-1359. https://doi.org/10.1109/CVPR.2013.178

Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk. 2019. From
Coarse to Fine: Robust Hierarchical Localization at Large Scale. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 12708-12717. https:
//doi.org/10.1109/CVPR.2019.01300

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. 2020.
Superglue: Learning feature matching with graph neural networks. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 4938-4947.

Paul-Edouard Sarlin, Ajaykumar Unagar, Mans Larsson, Hugo Germain, Carl Toft,
Viktor Larsson, Marc Pollefeys, Vincent Lepetit, Lars Hammarstrand, Fredrik Kahl,
et al. 2021. Back to the feature: Learning robust camera localization from pixels
to pose. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 3247-3257.

Torsten Sattler, Bastian Leibe, and Leif Kobbelt. 2011. Fast Image-Based Localization
Using Direct 2D-to-3D Matching. In 2011 International Conference on Computer
Vision. 667-674. https://doi.org/10.1109/ICCV.2011.6126302

Siyuan Shen, Yin Yang, Tianjia Shao, He Wang, Chenfanfu Jiang, Lei Lan, and Kun
Zhou. 2021. High-order differentiable autoencoder for nonlinear model reduction.
ACM Trans. Graph. 40, 4 (2021), 68:1-68:15. https://doi.org/10.1145/3450626.3459754

Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi,
and Andrew Fitzgibbon. 2013. Scene Coordinate Regression Forests for Camera
Relocalization in RGB-D Images. In 2013 IEEE Conference on Computer Vision and
Pattern Recognition. 2930-2937. https://doi.org/10.1109/CVPR.2013.377

Erik Stenborg, Carl Toft, and Lars Hammarstrand. 2018. Long-Term Visual Localization
Using Semantically Segmented Images. https://doi.org/10.48550/arXiv.1801.05269
arXiv:1801.05269 [cs]

Jiirgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers.
2012. A benchmark for the evaluation of RGB-D SLAM systems. In 2012 IEEE/RST
International Conference on Intelligent Robots and Systems. 573-580. https://doi.org/
10.1109/IROS.2012.6385773

Shitao Tang, Chengzhou Tang, Rui Huang, Siyu Zhu, and Ping Tan. 2021. Learning cam-
era localization via dense scene matching. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 1831-1841.

Carlo Tomasi and Roberto Manduchi. 1998. Bilateral filtering for gray and color images.
In Sixth international conference on computer vision (IEEE Cat. No. 98CH36271). IEEE,
839-846.

Bing Wang, Changhao Chen, Chris Xiaoxuan Lu, Peijun Zhao, Niki Trigoni, and Andrew
Markham. 2020. Atloc: Attention guided camera localization. , 10393-10401 pages.

Thomas Whelan, Stefan Leutenegger, Renato F Salas-Moreno, Ben Glocker, and An-
drew J Davison. 2015. ElasticFusion: Dense SLAM without a pose graph.. In Robotics:
science and systems, Vol. 11. Rome, Italy, 3.

Yanmin Wu, Yunzhou Zhang, Delong Zhu, Xin Chen, Sonya Coleman, Wenkai Sun,
Xinggang Hu, and Zhigiang Deng. 2021. Object slam-based active mapping and
robotic grasping. In 2021 International Conference on 3D Vision (3DV). IEEE, 1372-
1381.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 2015. 3D ShapeNets: A deep representation for volumetric
shapes. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
1912-1920. https://doi.org/10.1109/CVPR.2015.7298801

Zhe Xin, Yinghao Cai, Tao Lu, Xiaoxia Xing, Shaojun Cai, Jixiang Zhang, Yiping Yang,
and Yanqing Wang. 2019. Localizing discriminative visual landmarks for place
recognition. In 2019 International conference on robotics and automation (ICRA). IEEE,
5979-5985.

Kai Xu, Lintao Zheng, Zihao Yan, Guohang Yan, Eugene Zhang, Matthias Niessner,
Oliver Deussen, Daniel Cohen-Or, and Hui Huang. 2017. Autonomous reconstruction
of unknown indoor scenes guided by time-varying tensor fields. ACM Trans. Graph.
36, 6, Article 202 (nov 2017), 15 pages. https://doi.org/10.1145/3130800.3130812

Yabin Xu, Liangliang Nan, Laishui Zhou, Jun Wang, and Charlie C. L. Wang. 2022.
HRBF-Fusion: Accurate 3D Reconstruction from RGB-D Data Using On-the-fly
Implicits. ACM Transactions on Graphics 41, 3 (June 2022), 1-19. https://doi.org/10.
1145/3516521

X-SLAM: Scalable Dense SLAM for Task-aware Optimization using CSFD « 79:15

Rui Zeng, Yuhui Wen, Wang Zhao, and Yong-Jin Liu. 2020. View planning in robot
active vision: A survey of systems, algorithms, and applications. Computational
Visual Media 6 (2020), 225-245.

Liang Zhang, Leqi Wei, Peiyi Shen, Wei Wei, Guangming Zhu, and Juan Song. 2018.
Semantic SLAM Based on Object Detection and Improved Octomap. IEEE Access 6
(2018), 75545-75559. https://doi.org/10.1109/ACCESS.2018.2873617

Lintao Zheng, Chenyang Zhu, Jiazhao Zhang, Hang Zhao, Hui Huang, Matthias Niess-
ner, and Kai Xu. 2019. Active Scene Understanding via Online Semantic Reconstruc-
tion. Computer Graphics Forum 38,7 (2019), 103-114. https://doi.org/10.1111/cgf.
13820 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13820

ACM Trans. Graph., Vol. 43, No. 4, Article 79. Publication date: July 2024.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/CVPR.2013.178
https://doi.org/10.1109/CVPR.2019.01300
https://doi.org/10.1109/CVPR.2019.01300
https://doi.org/10.1109/ICCV.2011.6126302
https://doi.org/10.1145/3450626.3459754
https://doi.org/10.1109/CVPR.2013.377
https://doi.org/10.48550/arXiv.1801.05269
https://arxiv.org/abs/1801.05269
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1145/3130800.3130812
https://doi.org/10.1145/3516521
https://doi.org/10.1145/3516521
https://doi.org/10.1109/ACCESS.2018.2873617
https://doi.org/10.1111/cgf.13820
https://doi.org/10.1111/cgf.13820
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13820

	Abstract
	1 Introduction
	2 Related Work
	3 Complex-step Finite Difference
	4 X-SLAM
	4.1 X-KinectFusion
	4.2 X-ElasticFusion and X-PointFusion

	5 Evaluation
	5.1 X-KF Evaluation
	5.2 Camera Relocalization Based on X-KF
	5.3 Robot Active Scanning Based on X-EF

	6 Conclusion
	Acknowledgments
	References

