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Figure 1. Our method can model high-fidelity human avatars that can be animated under novel poses and rendered in real-time. Compared to
the state-of-the-art method AnimatableGaussians [28], our approach can recover finer details while achieving significantly faster rendering
speed (166 fps) under novel views and novel poses.

Abstract

Many works have succeeded in reconstructing Gaussian hu-
man avatars from multi-view videos. However, they either
struggle to capture pose-dependent appearance details with
a single MLP, or rely on a computationally intensive neu-
ral network to reconstruct high-fidelity appearance but with
rendering performance degraded to non-real-time. We pro-
pose a novel Gaussian human avatar representation that
can reconstruct high-fidelity pose-dependence appearance
with details and meanwhile can be rendered in real time.
Our Gaussian avatar is empowered by spatially distributed
MLPs which are explicitly located on different positions
on human body. The parameters stored in each Gaussian
are obtained by interpolating from the outputs of its nearby
MLPs based on their distances. To avoid undesired smooth
Gaussian property changing during interpolation, for each
Gaussian we define a set of Gaussian offset basis, and a lin-
ear combination of basis represents the Gaussian property
offsets relative to the neutral properties. Then we propose
to let the MLPs output a set of coefficients corresponding to
the basis. In this way, although Gaussian coefficients are
derived from interpolation and change smoothly, the Gaus-
sian offset basis is learned freely without constraints. The
smoothly varying coefficients combined with freely learned
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basis can still produce distinctly different Gaussian prop-
erty offsets, allowing the ability to learn high-frequency
spatial signals. We further use control points to constrain
the Gaussians distributed on a surface layer rather than al-
lowing them to be irregularly distributed inside the body, to
help the human avatar generalize better when animated un-
der novel poses. Compared to the state-of-the-art method,
our method achieves better appearance quality with finer
details while the rendering speed is significantly faster un-
der novel views and novel poses.

1. Introduction
Digital human avatars have widespread applications in the
fields like virtual reality and visual content creation. The
reconstruction of human avatars from multi-view videos has
been extensively studied, and remarkable progress is being
made with the radiance field representation (i.e., NeRF [33]
and 3D Gaussians [20]). Specially, with the fast training
and rendering speed, many works have succeeded in using
3D Gaussians to reconstruct digital human avatars with high
quality pose-dependent appearances.

Among those works, a common way is to use a single
multilayer perceptron (MLP) network [35, 42, 54] , which
takes human pose along with Gaussian position or learnable
code as input and outputs Gaussian property offsets for each
Gaussian. Though these methods can achieve real-time ren-



dering performance (i.e., 30-60 fps), due to limited learn-
ing capacity, they fail to capture high-frequency details.
To reconstruct high-fidelity detailed appearances, the state-
of-the-art work AnimatableGaussians [28] proposes to use
more powerful network StyleUNet [47] to predict Gaussian
property maps with the posed position map as input. An-
imatableGaussians [28] can reconstruct the highest-quality
human avatar among existing methods. However, due to
heavy computational burden brought by StyleUNet, the ren-
dering performance is not real time (i.e., around 10 fps).

Our goal is to reconstruct high-fidelity detailed Gaussian
human avatars, which can be rendered in real time under
novel views and novel poses. To this end, we propose a
new Gaussian human avatar representation, empowered by
spatially distributed MLPs. Different from the single MLP
which takes the position (or learnable code) and pose as in-
put, the spatially distributed MLPs are explicitly located on
different anchor positions on human body, and their input is
only the human pose. The parameters stored in each Gaus-
sian are obtained by interpolating from the outputs of its
nearby MLPs based on distances. In this way, each MLP is
only responsible for learning the the human appearance of
its local region, reducing the learning burden and enhancing
the capability of capturing high-frequency details. Besides,
with the position-based interpolation, we don’t need to send
every Gaussian position to the MLP anymore, avoiding go-
ing through the MLP too many times. For a pose, each
MLP only needs to be computed once, so the rendering per-
formance can be significantly accelerated, reaching 166 fps
even with 200K Gaussians under novel poses.

However, what to interpolate is not trivial. If we let the
MLPs output Gaussian property offsets as the single MLP in
previous methods, and perform interpolation on the Gaus-
sian property offsets, we will obtain smoothly changing
Gaussian property offsets across the body, which is undesir-
able and will produce artifacts (see Fig. 6 for example). To
this end, for each Gaussian, we define the neutral properties
representing the mean appearance, and a set of Gaussian
offset basis. A linear combination of the basis represents
the Gaussian property offsets relative to the neutral proper-
ties. Then we propose to let the MLPs output a set of co-
efficients, and the Gaussian coefficients for the offset basis
are obtained by interpolation. The key insight of our design
is, although Gaussian coefficients are derived from inter-
polation and change smoothly, the Gaussian offset basis is
learned freely without constraints. Therefore, the smoothly
varying coefficients combined with freely learned basis can
still produce distinctly different Gaussian property offsets.
This allows the Gaussians to have the ability to learn high-
frequency spatial signals.

Furthermore, we propose to use control points to con-
strain the Gaussians distributed on a surface layer rather
than allowing them to be irregularly distributed inside the

body. Specifically, the Gaussian position offset from the
neutral position is not optimized freely, but is interpolated
from the offsets of sampled control points on the body. By
constraining the neighboring control points to have similar
position offsets, the Gaussians among these control points
are also constrained to move in the same direction with-
out undesired moving inside. This design helps the human
avatar generalize better and eliminates artifacts when ani-
mated under novel poses.

Experiments demonstrate that our method can recon-
struct high-fidelity appearance with high-frequency details
of human avatars. Compared to the state-of-the-art method,
our method achieves better appearance quality with finer de-
tails while the rendering speed is significantly faster under
novel views and novel poses (166 fps versus 10 fps).

2. Related Work
Mesh based Human Avatar. Using mesh with texture
is the most common approach to model human avatars.
Through learning from video, many methods reconstruct
geometry for individuals and apply textures to obtain ap-
pearance. [1, 5, 51, 52] use dense camera arrays to recon-
struct geometry. [2, 46] further use depth cameras to assist
in geometry reconstruction. To obtain appearances under
different poses, [10, 11, 31, 51–53] use neural networks to
output textures for different poses. [51–53] further model
clothing as a separate layer, achieving realistic results with
garment dynamics.
Neural Rendering for Human Avatar. In recent years,
neural radiance field (NeRF [33]) has been widely used for
human avatar reconstruction. Many methods [18, 25, 27,
29, 30, 40, 41, 50, 55, 58] render the human avatar by in-
verse LBS and obtaining attributes (like color and density)
for volume rendering, and achieve good results. ARAH [48]
and Vid2avatar [9] further use signed distance function
(SDF) to represent human geometry. However, due to the
requirement of multiple sampling, these methods are ineffi-
cient, resulting in several seconds to render a single image.

Some works focus on accelerating the above rendering
process to achieve faster training and rendering speeds. In-
stantNVR [8] and InstantAvatar [17] use iNGP network [36]
to speed up training. However, these methods fail to cap-
ture human details, resulting in less realistic rendering.
AvatarRex [59], Deliffas [22], UV Volume [3] and RAM-
Avatar [6] achieve high-quality appearances at real-time
speeds. AvatarRex [59] is a method for full body avatar
with face, body and hands, where SLRF [58] and dynamic
feature patches are used to model the body geometry and
color. Despite some breakthroughs in speed, these meth-
ods still rely on extensive network computation to obtain
appearances, limiting their speed to around 10-25 fps.
3DGS based Human Avatar. 3D Gaussian Splatting
(3DGS [20]) provides a new paradigm for scene reconstruc-



tion. Many works have successfully use 3DGS for model-
ing human avatars. Kwon et al. [23] and GPS-Gaussian [57]
are able to reconstruct the avatar from multi-view cameras,
but their avatar cannot be driven by novel poses. Splattin-
gAvatar [44], HAHA [45], GomAvatar [49], Moon et al.
[34], EVA [13], Gauhuman [14], GART [24], iHuman [38],
HUGS [21] and SplatArmor [16] propose to reconstruct hu-
man avatars from monocular video. However, they cannot
model pose-dependent appearance. 3DGS-Avatar [42], Ye
et al. [54], Moreau et al. [35] propose to use a single MLP
to output Gaussian property offsets under different poses.
They typically use pose along with positions [42] or per-
Gaussian learnable codes [35, 54] as MLP inputs to predict
Gaussian properties. However, these methods fail to cap-
ture high-frequency details due to limited learning capacity.
Ash [37], UV Gaussians [19], MeshAvatar [4] proposes to
use convolutional neural network (CNN) to output Gaus-
sian property maps, but these works still fail to reconstruct
realistic human avatars. Both AnimatableGaussians [28]
and DEGAS [43] use large CNN to learn appearance and
achieve high-quality rendering. However, it is slow to go
through their network, as their large CNNs involve substan-
tial computation, limiting the rendering speed. Instead, our
approach doesn’t involve heavy neural network computa-
tions and can render high-quality avatar at faster speed.
Discussion of Highly Related Works. For the MLPs, both
SLRF [58] and our method employ spatially distributed
MLPs to learn local appearance. However, SLRF takes
position encoding as MLP input, which requires a huge
amount of position queries to the MLPs, largely decreasing
the inference speed, while our MLPs only take the human
pose as input, significantly reducing the computational bur-
den. For the linear basis, Gao et al. [7] and Ma et al. [32]
learn the blendshape basis while the coefficients are from
the FLAME [26] model and not learnable. Our method
jointly learns the coefficients and basis.

3. Method
Our approach takes the multi-view videos of a person as in-
put. Following previous methods [15, 28, 59], we extract
the foreground human mask, and register the SMPL-X [39]
model for each frame to obtain the 3D human pose. We
also use the method of AnimatableGaussians [28] to ob-
tain a canonical template mesh. Our goal is to reconstruct
a human avatar, which has pose-dependent high-fidelity de-
tailed appearances under novel views and novel poses, and
meanwhile can be rendered in real-time. We first introduce
our Gaussian avatar representation with spatially distributed
MLPs (Sec. 3.1). Then we propose to use control points to
obtain per Gaussian position offset, so that Gaussians can
be constrained on a surface layer (Sec. 3.2). Finally, we
describe the training and testing process, as well as imple-
mentation details (Sec. 3.3).

3.1. Gaussian Avatar with Spatially Distributed
MLPs

Our avatar is composed of N Gaussians and F spatially
distributed MLPs. Each Gaussian has a set of neutral
properties Λ0, including rotation r0, scale s0, opacity o0,
SH coefficients c0, and position x0. The neutral proper-
ties represent the mean human appearance across the video
frames. We also define a set of Gaussian offset basis δΛk =
{δrk, δsk, δok, δck}, k ∈ [1, B] for each Gaussian. A lin-
ear combination of the basis represents a Gaussian property
change relative to the neutral properties.

The spatially distributed MLPs are located on F an-
chor points {xj

a}j∈[1,F ] uniformly sampled on the template
mesh. Each MLP is only responsible for learning the lo-
cal appearance change around the anchor point. The MLP
takes the human pose vector θ as input, and outputs the an-
chor coefficients wj

a on each anchor point,

wj
a = Ej(θ), (1)

where Ej is the spatially distributed MLP located on the
jth anchor point. Based on the anchor coefficients, we ob-
tain the Gaussian coefficients wg for the offset basis on
each Gaussian by interpolating from the nearest three an-
chor points,

wg =

∑
j γ(x0,x

j
a) ·wj

a∑
j γ(x0,x

j
a)

, (2)

where γ(x,y) = 1/∥x − y∥2 is the reciprocal of the dis-
tance between two points. j is the index of three nearest
anchor points.

We linearly combine the Gaussian offset basis using the
Gaussian coefficients to obtain the property offset under
pose θ for each Gaussian, and the Gaussian properties are
obtained by adding the property offset to the neutral Gaus-
sian,

δΛ =

B∑
k=1

wg[k] · δΛk

Λ = Λ0 + δΛ.

(3)

Please note the Gaussian position is also computed as x =
x0 + δx, nevertheless the position offset δx is actually in-
terpolated from the position offsets of control points, which
is detailed in Sec. 3.2.

Afterwards, the Gaussians are transformed from the
canonical space to the pose θ using linear blend skinning
(LBS). The transformed Gaussians are finally rasterized to
produce high-fidelity detailed human images.

3.2. Control Point
We do not calculate the position offset using Eq. (3) because
this would allow each Gaussian to move freely in space dur-
ing optimization. Irregularly distributed Gaussians in space
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Figure 2. Pipeline overview. (a) We define the spatially distributed MLPs on anchor points, which are uniformly sampled on the template
mesh. Each MLP takes the pose θ as input and outputs the anchor coefficients wa. (b) The Gaussian coefficients wg are interpolated from
the coefficients of three nearest anchor points. (c) The Gaussian property offsets are obtained by linearly combining Gaussian offset basis
using Gaussian coefficients. Then the neutral Gaussian properties are added with Gaussian property offsets to model the human appearance
under pose θ. Finally the Gaussians are transformed to the pose θ and rasterized to produce high-fidelity images. Note that the Gaussian
position offset δx is obtained through control point interpolation, which is illustrated in Sec. 3.2.

Control point
Gaussian

𝛿𝛿𝒙𝒙𝑐𝑐
𝛿𝛿𝒙𝒙

Template 
mesh surface

Figure 3. Illustration of the control point. The Gaussian position
offset δx is interpolated from the position offsets of nearby control
points δxc.

can produce non-neglectable artifacts (see Fig. 7 “w/o con-
trol point”). Therefore, we need to constrain the Gaussians
distributed on a surface layer rather than allowing them to
be irregularly distributed inside the body.

A straightforward solution is to use smoothness loss to
constrain neighboring Gaussians to have similar position
offsets from the neutral positions. However, we find such
design can only ensure very local position smoothness and
cannot prevent Gaussians from moving inside the body, re-
sulting in suboptimal results (see Fig. 7 “w/o control point
(w/ smooth)” and supplementary video). To this end, we
propose to use sampled control points to yield similar posi-
tion offsets across larger areas, and interpolate the position
offsets on control points to generate the Gaussian position
offsets.

Specifically, we uniformly sample C control points
{xi

c}i∈[1,C] on the template mesh. Each control point has
its neutral position offset δxc0, as well as a set of position
offset basis {δxk

cb}k∈[1,B]. We compute the position offset
δxc for each control point by using the control point coeffi-
cients wc to combine the offset basis and adding the neutral
offset,

δxc = δxc0 +

B∑
k=1

wc[k] · δxk
cb. (4)

wc is computed by interpolating the anchor coefficients of
position offsets, similar to Eq. (2). Note the anchor coeffi-
cients of position offsets are simultaneously outputted from
the position-ware MLP Ej(θ) in Eq. (1)

Then, the Gaussian position offset δx is obtained by in-
terpolating the position offsets of its three nearest control
points,

δx =

∑
i γ(x0,x

i
c) · δxi

c∑
i γ(x0,xi

c)
, (5)

where i is the index of the three nearest control points.
Since the position offset of a Gaussian is interpolated

from nearby control points, by constraining the neighboring
control points to have similar position offsets, the Gaussians
among these control points are also constrained to move in
the same direction. This ensures that the Gaussians can be
optimized being distributed on a surface layer. Fig. 3 pro-
vides an illustration of the control point design.

Discussion. Note an alternative approach is to utilize an-
other MLP to predict the position offsets for each control
point. However, this approach produces blurry results (see
Fig. 7 “w/ MLP position offset”). This is because using an
MLP to learn position offsets for all control points in a se-
quence can exceed the network’s learning capacity, making
it struggle to learn position offsets for each control point.

3.3. Training and Testing
Implementation Details. We initialize N = 200K Gaus-
sians on the template mesh, with each Gaussian assigned the
skinning weights according to AnimatableGaussians [28].
We also uniformly sample F = 300 anchor points and
C = 10K control points on the template mesh. The Gaus-
sian neutral positions x0, anchor points xa, and control
points xc are fixed and not optimized once sampled on



the mesh. The spatially distributed MLP has four layers.
The pose vector used as MLP input does not include finger
joints, as we believe that changes in fingers do not affect the
overall appearance. The basis number B is set to 15. Each
sequence is trained for 800K iterations. Our method is im-
plemented using PyTorch, and we are able to achieve fast
rendering speed without using acceleration techniques like
CUDA or TensorRT, unlike previous method [59].
Training. During training, we simultaneously learn the
spatially distributed MLPs, Gaussian neutral properties and
property offset basis, as well as the neural position offsets
and position offset basis for control points. We set the learn-
ing rate as 5×10−4 for {r0, s0, o0, c0} , 1.6×10−4 for δxc0,
and 5 × 10−4 for spatially distributed MLPs. The learning
rates for the basis are five times smaller. We also use learn-
ing rate decay in our implementation.

For the loss functions, we use the L1 loss as in
3DGS [20] and LPIPS [56] loss. The nearby control points
are constrained to have similar position offsets δxc:

Lctrl =
∑
i,j

∥δxi
c − δxj

c∥2, (6)

where i, j are the indices of nearby control points. We also
limit the Gaussian scale to prevent the Gaussians being too
large:

Lscale =

N∑
i=1

max(0.01, si). (7)

The final loss is

L = L1 + 0.1Llpips + 0.1Lctrl + Lscale. (8)

Testing. Following AnimatableGaussians [28], we use
PCA to project novel poses to the space of training poses.
Specially, all pose vectors of training poses form a matrix
X . we perform PCA on X and then project the novel pose
to the linear space before using it as input. This strategy
can make the model generalize better on the novel pose by
fitting it within the space of the training poses.

4. Experiments
We conduct experiments on the following public datasets:
AvatarRex [59]. This dataset contains full-body videos
captured at 2K resolution from 16 views. We use 3 se-
quences and 14 views for our experiments.
THuman4.0 [58]. The dataset contains videos of people
with rich wrinkles in their appearance. The videos are cap-
tured at 1K resolution. We use 3 sequences and 24 views
for our experiments.
ActorsHQ [15]. ActorsHQ is a high-quality dataset. We
use 7 sequences and select 39 full-body views for training.
We use 4x down-sampled images, with each image approx-
imately 1K resolution.
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Figure 4. Qualitative comparison with the state-of-the-art methods
on training pose reconstruction (top two subjects) and novel pose
synthesis (bottom subject).

Each sequence of the above datasets contains 1000 to
2000 frames. We also use the SMPL-X registrations pro-
vided by AnimatableGaussians [28] for each sequence.

For quantitative experiments, we use Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index Mea-
sure (SSIM), Learned Perceptual Image Patch Similarity
(LPIPS [56]), and Frechet Inception Distance (FID [12]) as
metrics. We calculate PSNR, SSIM, and FID on the whole
image, and LPIPS within the body bounding box. Train-
ing time and rendering speed are all evaluated on a single
NVIDIA 3090 card.



Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
3DGS-Avatar [42] 28.9530 0.9741 0.0464 24.9938
MeshAvatar [4] 29.3154 0.9731 0.0397 19.7409
AnimatableGaussians [28] 31.2992 0.9831 0.0251 11.3421
Ours 32.7456 0.9868 0.0226 10.1169

Table 1. Quantitative comparison with the state-of-the-art methods
under training poses.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
PoseVocab [27] 26.3784 0.9707 0.0592 49.4541
3DGS-Avatar [42] 27.5524 0.9737 0.0597 31.0979
MeshAvatar [4] 27.4025 0.9717 0.0571 27.4278
AnimatableGaussians [28] 28.1106 0.9741 0.0552 19.2324
Ours 28.3263 0.9747 0.0537 19.0217

Table 2. Quantitative comparison with the state-of-the-art methods
under novel poses.

Method Training Time (hours) ↓ FPS ↑
AnimatableGaussians [28] 100 10
DEGAS [43] 55 30
Ours 17.5 166

Table 3. Performance comparison. All methods are trained for
800K iterations. The training time and rendering fps under novel
poses are recorded on a single NVIDIA 3090 card. For DE-
GAS [43], we directly adopt the data from the original paper.

4.1. Comparison
Quality. We compare our method with 3DGS-Avatar [42],
MeshAvatar [4], and AnimatableGaussians [28]. We con-
duct experiments on sequence avatarrex zzr from Avatar-
ReX dataset and sequence subject00, subject02 from
THuman4.0 dataset. avatarrex zzr and subject02 are
evaluated under training poses, while subject00 is eval-
uated under novel poses. We present qualitative results
in Fig. 4. In the cases of avatarrex zzr and subject02,
3DGS-Avatar and MeshAvatar struggle to learn fine wrin-
kles and textures. Although both our method and Animat-
ableGaussians can capture wrinkles similar to the ground
truth, our method captures better details (e.g., the text
“LIFE WITHOUT LIMITS” on the chest of avatarrex zzr
and the socks of subject02). In subject00, 3DGS-Avatar
and MeshAvatar are not able to render high-quality appear-
ances under novel poses, while our method and Animatable-
Gaussians can produce details like wrinkles. Therefore, our
method surpasses other state-of-the-art methods like 3DGS-
Avatar and MeshAvatar, and achieves comparable results to
AnimatableGaussians, but with higher-fidelity details. For
quantitative results, Tab. 1 presents the metric comparison
under training poses and Tab. 2 under novel poses. Our
method achieves the best results, demonstrating our method
has strong learning ability in modeling human avatars and
generalizes well to novel poses.
Speed. We also compare the training and rendering speed
with AnimatableGaussians [28] and DEGAS [43], which
could render high-quality human avatars as well. Since

w/o SD MLPs Predict properties Ours GT

Figure 5. Qualitative comparison of several design choices.
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Figure 6. Ablation study on Gaussian offset basis.

DEGAS hasn’t released its code, we directly use the per-
formance data from its paper. Tab. 3 shows the training
time and rendering speed. Our method uses less time to
train and significantly outperforms other methods in ren-
dering speed. This is because these methods use a large
CNN to predict Gaussian properties, requiring a lot of time
to go through the network (i.e., AnimatableGaussians takes
107ms to infer their network once). In contrast, our method
takes only about 6ms to render a frame for 200K Gaussians,
with 1.5ms for obtaining Gaussian coefficients, 3.3ms for
combining the basis and LBS, and 1.1ms for rasterization,
making the rendering process highly efficient.

4.2. Ablation Study
In this section, we evaluate several of our key designs.
These designs impact the results in terms of quality or effi-
ciency.
Spatially Distributed MLPs. Using multiple spatially dis-
tributed MLPs enhances the model’s learning ability. For
comparison, we use a single MLP to output the coefficient
to combine the basis. Tab. 4 “w/o SD MLPs” shows that this
approach greatly decreases the metrics, proving that a sin-
gle MLP lacks sufficient learning capacity. Fig. 5 “w/o SD
MLPs” also demonstrates that a single MLP is inadequate
for capturing appearance details.

We also evaluate how the number of spatially distributed
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Figure 7. Ablation study on control point.

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ Training ↓ FPS ↑
w/o SD MLPs 30.1941 0.9791 0.0314 15.4545 15.8 h 182
w/o basis (300 MLPs) 31.8444 0.9832 0.0294 14.4292 15.7 h 205
w/o basis (2500 MLPs) 32.3912 0.9854 0.0244 11.0721 27.0 h 115
Predict properties 31.9340 0.9834 0.0260 10.9757 24.2 h 51
w/o control point 32.6780 0.9859 0.0241 10.6394 17.8 h 161
w/ MLP position offset 31.8514 0.9816 0.0338 17.8664 18.4 h 148
Ours 32.7456 0.9868 0.0226 10.1169 17.5 h 166

Table 4. Ablation study on design choices.

MLP number PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ Training ↓ FPS ↑
50 32.6625 0.9863 0.0237 11.1197 16.6 h 173
300 (Ours) 32.7456 0.9868 0.0226 10.1169 17.5 h 166
800 32.7313 0.9866 0.0224 9.8885 20.8 h 149

Table 5. Quantitative comparison of different number of spatially
distributed MLPs.

Basis number PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ Training ↓ FPS ↑
5 32.3523 0.9854 0.0248 11.5850 16.5 h 175
15 (Ours) 32.7456 0.9868 0.0226 10.1169 17.5 h 166
40 32.7154 0.9866 0.0221 10.0522 20.4 h 156
40 (large MLP) 32.7010 0.9869 0.0220 9.9707 24.6 h 140

Table 6. Quantitative comparison of different number of the basis.

MLPs will influence the results. Tab. 5 shows the quality
metrics and speed. To balance quality and efficiency, we
choose to use F = 300 MLPs.
Gaussian Offset Basis. We demonstrate that high-
frequency details are difficult to recover without Gaussian
offset basis. To prove this, we let the spatially distributed
MLPs output Gaussian property offsets, and perform inter-
polation on the Gaussian property offsets. We experiment
this idea using 300 and 2500 MLPs. Fig. 6 “w/o basis (300
MLPs)” and “w/o basis (2500 MLPs)” cannot recover all
the fine details. In comparison, our results are almost iden-
tical to the ground truth. For quantitative comparison, Tab. 4
“w/o basis (300 MLPs)” and “w/o basis (2500 MLPs)”
show a decline in metrics compared with ours. Also, in-
creasing the number of MLPs to 2500 can also reduce ren-
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Figure 8. Results of different view number.

dering speed, as shown in Tab. 4 “w/o basis (2500 MLPs)”.
We also shows that other possible designs are not as good

as our basis combination. For example, following Ye et al.
[54], we assign a learnable vector to each Gaussian. Each
Gaussian finds its nearest spatially distributed MLP and the
MLP takes the learnable vector and pose vector as input and
directly predicts Gaussian property offsets. Fig. 5 “Predict
properties” shows the results, indicating that this design still
fails to capture very high-frequency details (such as the text
on the chest). Additionally, because the MLPs take the pose
and learnable vector as input, they need to be inferred many
times, thus the training time increases and rendering speed
is significantly reduced, as shown in Tab. 4 “Predict proper-
ties”.

We also verify the suitable number of basis. Tab. 6 shows
quantitative results for 5, 15, and 40 bases. The results of 15
and 40 bases are comparable with tiny gaps. A reasonable
guess is that the linear sub-space of the Gaussian property
offsets space can already be well supported with 15 bases.
Increasing to 40 bases does not necessarily improve the rep-
resentation capability. To further validate the guess, we use
larger MLPs to learn 40 coefficients for 40 bases, in case
the performance is limited by the MLP capacity, but the re-
sults are still comparable with those of 15 bases with slight
differences (see Tab. 6). Empirically, we choose B = 15 as
our selection.
Control Point. Without control points, Gaussians can move
freely, resulting in suboptimal results when animated under
novel pose. Fig. 7 “w/o control point” shows qualitative
result. Even with additional local smoothness constraints
(Fig. 7 “w/o control point (w/ smooth)” ), Gaussians still
cannot be well-constrained to the surface, causing details
such as text and textures to become corrupted under novel
pose. We also demonstrate that utilizing another MLP to
predict the position offsets for each control point is still in-
sufficient to render good results (Fig. 7 “w/ MLP position
offset” ). This is because using an MLP to learn position
offsets for all control points in a sequence may still exceed



Figure 9. Our method achieves high-quality human avatar reconstruction and animation under novel poses.

one MLP’s learning capacity. Tab. 4 “w/ MLP position off-
set” also shows decline in metrics.
Sparse View. Our method can be trained under sparse view-
points. We evaluate it using sequence avatarrex lbn2 from
AvatarRex dataset, and present results in Fig. 8 using 3, 6
and 14 viewpoints. Our method achieves high-fidelity re-
sults even with only three viewpoints for training and can
still be animated under novel poses.

4.3. More Results
We show more results in Fig. 9. The presented results are
animated under novel poses. Our method achieves high-
quality human avatar reconstruction and animation. We also
provide a viewer that allows users to interactively animate
the reconstructed human avatar. Please refer to the supple-
mentary video for more visual results. We note that fps in
the viewer is slightly lower due to additional data transmis-
sion overhead.

5. Conclusion and Limitation
In this paper, we propose a method capable of model-
ing high-fidelity human avatars with high-frequency details
while the rendering speed is very fast. We use the spatially

distributed MLPs to infer the coefficients for the Gaussian
offset basis. The smoothly interpolated coefficients com-
bined with freely learned basis can produce distinctly differ-
ent Gaussian property offsets, allowing the ability to learn
high-frequency details. We also use control points to con-
strain the Gaussians to be distributed on a surface layer
without moving inside the body. Experiments demonstrate
that our method surpasses previous state-of-the-art methods
both in reconstruction fidelity and rendering performance.
Currently our avatar appearance is conditioned on pose and
cannot model other complex cloth dynamics such as long
skirt swaying in the wind. Modeling clothes as a sepa-
rate layer and incorporating simulation could potentially
improve the applicability of our model. Reconstructing hu-
man avatars with high-fidelity pose-dependent appearances
from monocular videos is another direction worth explor-
ing. Our method still relies on multi-view capture, pose
estimation, and template mesh extraction, which makes the
pipeline quite heavy. In future we plan to use fewer RGBD
cameras to reduce the complexity of pipeline, as the diffi-
culties of skeleton estimation and mesh reconstruction can
be largely reduced with the depth information.
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